Publications by authors named "Mitchell Nancarrow"

Molybdenum carbides are promising low-cost electrocatalysts for electrolyzers, fuel cells, and batteries. However, synthesis of ultrafine, phase-pure carbide nanoparticles (diameter < 5 nm) with large surface areas remains challenging due to uncontrollable agglomeration that occurs during traditional high temperature syntheses. This work presents a scalable, physical approach to synthesize molybdenum carbide nanoparticles at room temperature by ion implantation.

View Article and Find Full Text PDF

The conducting boundary states of topological insulators appear at an interface where the characteristic invariant ℤ switches from 1 to 0. These states offer prospects for quantum electronics; however, a method is needed to spatially-control ℤ to pattern conducting channels. It is shown that modifying SbTe single-crystal surfaces with an ion beam switches the topological insulator into an amorphous state exhibiting negligible bulk and surface conductivity.

View Article and Find Full Text PDF

Biochar amendments add persistent organic carbon to soil and can stabilize rhizodeposits and existing soil organic carbon (SOC), but effects of biochar on subsoil carbon stocks have been overlooked. We quantified changes in soil inorganic carbon (SIC) and SOC to 2 m depth 10 years after biochar application to calcareous soil. The total soil carbon (i.

View Article and Find Full Text PDF

This Data-in-brief article includes datasets of electron microscopy, polarised neutron reflectometry and magnetometry for ultra-small cobalt particles formed in titania thin films via ion beam synthesis. Raw data for polarised neutron reflectometry, magnetometry and the particle size distribution are included and made available on a public repository. Additional elemental maps from scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) are also presented.

View Article and Find Full Text PDF

The amount and distribution of water in nominally anhydrous minerals (NAMs) are usually determined by Fourier-transform infrared spectroscopy. This method is limited by the spot size of the beam to the study of samples with dimensions greater than a few micrometers. Here, we demonstrate the potential of using photoinduced force microscopy for the measurement of water in NAMs with samples sizes down to the nanometer scale with a study of water concentration across grain boundaries in forsterite.

View Article and Find Full Text PDF

We present a novel framework for the fabrication of geometrically complex structures at the micro- and nano-scale which relies on the synergy of integrated computer-aided design and manufacturing systems (CAD/CAM) and focused ion beam (FIB) technology in a scanning electron microscope. Here we utilise industry standard G-code syntax, for the first time, to FIB machining by designing geometries with CAD, defining machining strategies and exporting G-codes with CAM and generating a coordinate list-based beam path by using a custom-built interpreter program. This allows the fabrication of complex structures from CAD models using syntax which is readily understood in the general fabrication industry.

View Article and Find Full Text PDF

Electrical communication between a biological system and outside equipment allows one to monitor and influence the state of the tissue and nervous networks. As the bridge, bioelectrodes should possess both electrical conductivity and adaptive mechanical properties matching the target soft biosystem, but this is still a big challenge. A family of liquid-metal-based magnetoactive slurries (LMMSs) formed by dispersing magnetic iron particles in a Ga-based liquid metal (LM) matrix is reported here.

View Article and Find Full Text PDF

The present case study compares transmission Kikuchi diffraction (TKD) with electron back-scattering diffraction (EBSD) on the same area of an electron transparent cross-section of a twinning induced plasticity steel. While TKD expectedly provides better clarity of internal defect substructures in the band contrast map, EBSD returns orientation data that approaches the quality of the TKD map. This was rationalised by Monte Carlo simulations of the electron energy spreads, which showed that due to the geometry-based compromises associated with adapting a conventional EBSD detector (which is off-axis with respect to the incident electron beam) to TKD, a broadening in the electron energy distribution of the forward-scattered electrons collected on the detector phosphor screen, is unavoidable.

View Article and Find Full Text PDF

Magnesium-based thermoelectric materials (MgX, X = Si, Ge, Sn) have received considerable attention due to their availability, low toxicity, and reasonably good thermoelectric performance. The synthesis of these materials with high purity is challenging, however, due to the reactive nature and high vapour pressure of magnesium. In the current study, high purity single phase n-type MgGe has been fabricated through a one-step reaction of MgH and elemental Ge, using spark plasma sintering (SPS) to reduce the formation of magnesium oxides due to the liberation of hydrogen.

View Article and Find Full Text PDF

A simple procedure, which enables accurate measurement of transmission electron microscopy (TEM)/STEM probe currents using an energy loss spectrometer drift tube is described. The currents obtained are compared with those measured on the fluorescent screen to enable the losses due to secondary and backscattered electrons to be determined. The current values obtained from the drift tube allow the correction of fluorescent screen current densities to yield true current.

View Article and Find Full Text PDF