Publications by authors named "Mitchell Nahmias"

Microring weight banks present novel opportunities for reconfigurable, high-performance analog signal processing in photonics. Controlling microring filter response is a challenge due to fabrication variations and thermal sensitivity. Prior work showed continuous weight control of multiple wavelength-division multiplexed signals in a bank of microrings based on calibration and feedforward control.

View Article and Find Full Text PDF

Neocortical systems encode information in electrochemical spike timings, not just mean firing rates. Learning and memory in networks of spiking neurons is achieved by the precise timing of action potentials that induces synaptic strengthening (with excitation) or weakening (with inhibition). Inhibition should be incorporated into brain-inspired spike processing in the optical domain to enhance its information-processing capability.

View Article and Find Full Text PDF
Article Synopsis
  • Weighted addition is a key process in photonic devices, allowing multiple inputs to be combined into one output efficiently.
  • Researchers have created two-pole microring weight banks that take advantage of unique inter-channel interference to enhance performance and adaptability.
  • Their design forecasting suggests a significant increase in channel capacity (3.4 times more) compared to traditional methods, broadening the applications of reconfigurable analog photonic networks.
View Article and Find Full Text PDF

Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks.

View Article and Find Full Text PDF

We demonstrate 4-channel, 2GHz weighted addition in a silicon microring filter bank. Accurate analog weight control becomes more difficult with increasing number of channels, N, as feedback approaches become impractical and brute force feedforward approaches take O(2N) calibration measurements in the presence of inter-channel dependence. We introduce model-based calibration techniques for thermal cross-talk and cross-gain saturation, which result in a scalable O(N) calibration routine and 3.

View Article and Find Full Text PDF

Novel materials and devices in photonics have the potential to revolutionize optical information processing, beyond conventional binary-logic approaches. Laser systems offer a rich repertoire of useful dynamical behaviors, including the excitable dynamics also found in the time-resolved "spiking" of neurons. Spiking reconciles the expressiveness and efficiency of analog processing with the robustness and scalability of digital processing.

View Article and Find Full Text PDF

The combination of ultrafast laser dynamics and dense on-chip multiwavelength networking could potentially address new domains of real-time signal processing that require both speed and complexity. We present a physically realistic optoelectronic simulation model of a circuit for dynamical laser neural networks and verify its behavior. We describe the physics, dynamics, and parasitics of one network node, which includes a bank of filters, a photodetector, and excitable laser.

View Article and Find Full Text PDF

We consider an optical technique for performing tunable weighted addition using wavelength-division multiplexed (WDM) inputs, the enabling function of a recently proposed photonic spike processing architecture [J. Lightwave Technol., 32 (2014)].

View Article and Find Full Text PDF

We propose an equivalent circuit model for photonic spike processing laser neurons with an embedded saturable absorber—a simulation model for photonic excitable lasers (SIMPEL). We show that by mapping the laser neuron rate equations into a circuit model, SPICE analysis can be used as an efficient and accurate engine for numerical calculations, capable of generalization to a variety of different types of laser neurons with saturable absorber found in literature. The development of this model parallels the Hodgkin-Huxley model of neuron biophysics, a circuit framework which brought efficiency, modularity, and generalizability to the study of neural dynamics.

View Article and Find Full Text PDF

We developed a hybrid analog/digital lightwave neuromorphic processing device that effectively performs signal feature recognition. The approach, which mimics the neurons in a crayfish responsible for the escape response mechanism, provides a fast and accurate reaction to its inputs. The analog processing portion of the device uses the integration characteristic of an electro-absorption modulator, while the digital processing portion employ optical thresholding in a highly Ge-doped nonlinear loop mirror.

View Article and Find Full Text PDF