Hall effect thrusters (HETs) are typically regarded as DC electric propulsion devices as they are operated with isolated DC power supplies. However, it is well known that the HET's discharge current possesses oscillations of varying magnitudes and frequencies and is thus a function of time with AC characteristics. The observed oscillations are caused by plasma processes associated with ion, electron, and neutral particle dynamics that occur inside the HET's discharge channel and in the plume as the HET electrically interacts with its local operating environment.
View Article and Find Full Text PDFLaser Thomson scattering (LTS) is a measurement technique that can determine electron velocity distribution functions in plasma systems. However, accurately inferring quantities of interest from an LTS signal requires the selection of a plasma physics submodel, and comprehensive uncertainty quantification (UQ) is needed to interpret the results. Automated model selection, parameter estimation, and UQ are particularly challenging for low-density, low-temperature, potentially non-Maxwellian plasmas like those created in space electric propulsion devices.
View Article and Find Full Text PDFLaser Thomson scattering (LTS) is a minimally invasive measurement technique used for determining electron properties in plasma systems. Sheath model closure validation requires minimally invasive measurements of the electron properties that traverse the boundaries between the bulk plasma, the presheath, and the plasma sheath. Several studies have probed the radial properties along the surface of discharge electrodes with laser-based diagnostics and electrostatic probes.
View Article and Find Full Text PDFTerahertz time-domain spectroscopy (THz-TDS) is an optical diagnostic used to noninvasively measure plasma electron density and collision frequency. Conventional methods for analyzing THz-TDS plasma diagnostic data often do not account for measurement artifacts and do not quantify parameter uncertainties. We introduce a novel Bayesian framework that overcomes these deficiencies.
View Article and Find Full Text PDFBlood clots occur in the human body when they are required to prevent bleeding. In pathological states such as diabetes and sickle cell disease, blood clots can also form undesirably due to hypercoagulable plasma conditions. With the continued effort in developing fibrin therapies for potential life-saving solutions, more mechanical modeling is needed to understand the properties of fibrin structures with inclusions.
View Article and Find Full Text PDFA rf power system has been developed, which allows the use of rf plasma devices in an electric propulsion test facility without excessive noise pollution in thruster diagnostics. Of particular importance are thrust stand measurements, which were previously impossible due to noise. Three major changes were made to the rf power system: first, the cable connection was changed from a balanced transmission line to an unbalanced coaxial line.
View Article and Find Full Text PDFThis article presents the theory and operation of a null-type, inverted pendulum thrust stand. The thrust stand design supports thrusters having a total mass up to 250 kg and measures thrust over a range of 1 mN to 5 N. The design uses a conventional inverted pendulum to increase sensitivity, coupled with a null-type feature to eliminate thrust alignment error due to deflection of thrust.
View Article and Find Full Text PDF