Biomass and yield are key variables for assessing the production and performance of agricultural systems. Modeling and predicting the biomass and yield of individual plants at the farm scale represents a major challenge in precision agriculture, particularly when salinity and other abiotic stresses may play a role. Here, we evaluate a diversity panel of the wild tomato species () through both field and unmanned aerial vehicle (UAV)-based phenotyping of 600 control and 600 salt-treated plants.
View Article and Find Full Text PDFWith salt stress presenting a major threat to global food production, attention has turned to the identification and breeding of crop cultivars with improved salt tolerance. For instance, some accessions of wild species with higher salt tolerance than commercial varieties are being investigated for their potential to expand food production into marginal areas or to use brackish waters for irrigation. However, assessment of individual plant responses to salt stress in field trials is time-consuming, limiting, for example, longitudinal assessment of large numbers of plants.
View Article and Find Full Text PDFSalt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultural demands on dwindling freshwater resources. However, despite significant efforts, progress towards this goal has been limited, largely because of the genetic complexity of salt tolerance for agronomically important yield-related traits.
View Article and Find Full Text PDF, a wild relative of cultivated tomato, offers a wealth of breeding potential for desirable traits such as tolerance to abiotic and biotic stresses. Here, we report the genome assembly and annotation of 'LA0480.' Moreover, we present phenotypic data from one field experiment that demonstrate a greater salinity tolerance for fruit- and yield-related traits in compared with cultivated tomato.
View Article and Find Full Text PDFTomato is the most economically important horticultural crop used as a model to study plant biology and particularly fruit development. Knowledge obtained from tomato research initiated improvements in tomato and, being transferrable to other such economically important crops, has led to a surge of tomato-related research and published literature. We developed DES-TOMATO knowledgebase (KB) for exploration of information related to tomato.
View Article and Find Full Text PDF