Publications by authors named "Mitchell Harling"

The entropy associated with an optical field quantifies the field fluctuations and thus its coherence. Any binary optical degree-of-freedom (DoF) - such as polarization or the field at a pair of points in space - can each carry up to one bit of entropy. We demonstrate here that entropy can be reversibly swapped between different DoFs, such that coherence is converted back and forth between them without loss of energy.

View Article and Find Full Text PDF

The capacity of self-healing fields to reconstruct after passing through scattering media may prove useful in reducing speckle formation. Here, we study the speckle response of the space-time (ST) light sheet compared to a Gaussian wave packet, Airy beam, and Bessel Gauss beam. We find that the Pearson's correlation coefficient for the ST light sheet is 50%, 48% and 40% larger than that of the Gaussian, Airy beam and Bessel Gauss beams, respectively, demonstrating a strong correlation to an input beam that has not been speckled.

View Article and Find Full Text PDF

We introduce the space-time (ST) vector light sheet. This unique one-dimensional ST wave packet is characterized by classical entanglement (CE), a correlation between at least two non-separable intrinsic degrees-of-freedom (DoFs), which in this case are the spatiotemporal DoFs in parallel with the spatial-polarization DoFs. We experimentally confirm that the ST vector light sheet maintains the intrinsic features of the uniformly polarized ST light sheet, such as near-diffraction-free propagation and self-healing, while also maintaining the intrinsic polarization structure of common vector beams, such as those that are radially polarized and azimuthally polarized.

View Article and Find Full Text PDF

Over the past decade, the use of polymers as platform materials for biomedical applications including tissue engineering has been of rising interest. Recently, the use of naturally derived polysaccharides as 3-D scaffolds for tissue regeneration has shown promising material characteristics; however, due to complexities in composition, morphology, and optical properties, adequate spatial and temporal characterization of cellular behavior in these materials is lacking. Multiphoton microscopy has emerged as a viable tool for performing such quantification by permitting greater imaging depth while simultaneously minimizing un-favorable scattering and producing high-resolution optical cross sections for non-invasive analysis.

View Article and Find Full Text PDF

The extraction of fluorophore lifetimes in a biological sample provides useful information about the probe environment that is not readily available from fluorescence intensity alone. Cell membrane potential, pH, concentration of oxygen ([O]), calcium ([Ca]), NADH and other ions and metabolites are all regularly measured by lifetime-based techniques. These measurements provide invaluable knowledge about cell homeostasis, metabolism and communication with the cell environment.

View Article and Find Full Text PDF