Publications by authors named "Mitchell Han"

Understanding cells' response to the macroscopic and nanoscale properties of biomaterials requires studies in model systems with the possibility to tailor their mechanical properties and different length scales. Here, we describe an interpenetrating network (IPN) design based on a stiff PEGDA host network interlaced within a soft 4-arm PEG-Maleimide/thiol (guest) network. We quantify the nano- and bulk mechanical behavior of the IPN and the single network hydrogels by single-molecule force spectroscopy and rheological measurements.

View Article and Find Full Text PDF

Blood vessel morphogenesis is driven by coordinated endothelial cell behaviors. Active remodeling of cell-cell junctions promotes cellular plasticity while preserving vascular integrity. Here, we analyze the dynamics of endothelial adherens junctions during lumen formation in angiogenic sprouts in vivo.

View Article and Find Full Text PDF

Despite the progress in surgical techniques and antibiotic prophylaxis, opportunistic wound infections with remain a public health problem. Secreted toxins are one of the main factors contributing to . pathogenicity.

View Article and Find Full Text PDF

Progress in our understanding of mechanotransduction events requires noninvasive methods for the manipulation of forces at molecular scale in physiological environments. Inspired by cellular mechanisms for force application (i.e.

View Article and Find Full Text PDF

Excess presence of the human epidermal growth factor receptor 2 (HER2) as well as of the focal adhesion protein complexes are associated with increased proliferation, migratory, and invasive behavior of cancer cells. A cross-regulation between HER2 and integrin signaling pathways has been found, but the exact mechanism remains elusive. Here, we investigated whether HER2 colocalizes with focal adhesion complexes on breast cancer cells overexpressing HER2.

View Article and Find Full Text PDF

Collagen is the most abundant structural protein in mammals and is crucial for the mechanical integrity of tissues. Hsp47, an endoplasmic reticulum resident collagen-specific chaperone, is involved in collagen biosynthesis and plays a fundamental role in the folding, stability, and intracellular transport of procollagen triple helices. This work reports on a photoactivatable derivative of Hsp47 that allows regulation of collagen biosynthesis within mammalian cells using light.

View Article and Find Full Text PDF

The formation of multicellular tissues during development is governed by mechanical forces that drive cell shape and tissue architecture. Protein complexes at sites of adhesion to the extracellular matrix (ECM) and cell neighbors, not only transmit these mechanical forces, but also allow cells to respond to changes in force by inducing biochemical feedback pathways. Such force-induced signaling processes are termed mechanotransduction.

View Article and Find Full Text PDF

Cadherin adhesion complexes have recently emerged as sensors of tissue tension that regulate key developmental processes. Super-resolution microscopy experiments now unravel the spatial organization of the interface between cadherins and the actin cytoskeleton and reveal how vinculin, a central component in cadherin mechanotransduction, is regulated by mechanical and biochemical signals.

View Article and Find Full Text PDF

Cadherin complexes mediate cell-cell adhesion and are crucial for embryonic development. Besides their structural function, cadherin complexes also transduce tension across the junction-actomyosin axis into proportional biochemical responses. Central to this mechanotransduction is the stretching of the cadherin-F-actin-linker α-catenin, which opens its central domain for binding to effectors such as vinculin.

View Article and Find Full Text PDF

The molecular mechanisms by which physical forces control tissue development are beginning to be elucidated. Sites of adhesion between both cells and the extracellular environment [extracellular matrix (ECM) or neighboring cells] contain protein complexes capable of sensing fluctuations in tensile forces. Tension-dependent changes in the dynamics and composition of these complexes mark the transformation of physical input into biochemical signals that defines mechanotransduction.

View Article and Find Full Text PDF

Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner.

View Article and Find Full Text PDF

The chemokine receptor CXCR7 binds CXCL11 and CXCL12 with high affinity, chemokines that were previously thought to bind exclusively to CXCR4 and CXCR3, respectively. Expression of CXCR7 has been associated with cardiac development as well as with tumor growth and progression. Despite having all the canonical features of G protein-coupled receptors (GPCRs), the signalling pathways following CXCR7 activation remain controversial, since unlike typical chemokine receptors, CXCR7 fails to activate Gα(i)-proteins.

View Article and Find Full Text PDF

Preselection of compounds that are more likely to induce a phenotype can increase the efficiency and reduce the costs for model organism screening. To identify such molecules, we screened ~81,000 compounds in Saccharomyces cerevisiae and identified ~7500 that inhibit cell growth. Screening these growth-inhibitory molecules across a diverse panel of model organisms resulted in an increased phenotypic hit-rate.

View Article and Find Full Text PDF