Publications by authors named "Mitchell G Spring"

Serotonin modulates diverse phenotypes and functions including depressive, aggressive, impulsive, and feeding behaviors, all of which have reward-related components. To date, research has focused on understanding these effects by measuring and manipulating dorsal raphe serotonin neurons and using single-receptor approaches. These studies have led to a better understanding of the heterogeneity of serotonin actions on behavior; however, they leave open many questions about the timing and location of serotonin's actions modulating the neural circuits that drive these behaviors.

View Article and Find Full Text PDF

Impulsivity generally refers to a deficit in inhibition, with a focus on understanding the neural circuits which constitute the "brake" on actions and gratification. It is likely that increased impulsivity can arise not only from reduced inhibition, but also from a heightened or exaggerated excitatory "drive." For example, an action which has more vigor, or is fueled by either increased incentive salience or a stronger action-outcome association, may be harder to inhibit.

View Article and Find Full Text PDF

Animals appoint incentive value and learn to approach otherwise behaviorally inert stimuli if these stimuli come to predict the delivery of reward. Interestingly, this adaptive Pavlovian learning process has been implicated in behavioral control disorders, such as drug addiction. One brain region implicated in directing conditioned approach behavior is the prelimbic region of the prefrontal cortex.

View Article and Find Full Text PDF

Chronic stress impairs the function of multiple brain regions and causes severe hedonic and motivational deficits. One brain region known to be susceptible to these effects is the PFC. Neurons in this region, specifically neuronal projections from the prelimbic region (PL) to the nucleus accumbens core (NAcC), have a significant role in promoting motivated approach.

View Article and Find Full Text PDF

Cannabidiol (CBD) is a phytocannabinoid that has demonstrated anticonvulsant efficacy in several animal models of seizure. The current experiment validated CBD's anticonvulsant effect using the acute pentylenetetrazol (PTZ) model. Furthermore, it tested whether CBD reduces seizure activity by interacting with either the serotonergic 5HT1A or 5HT2A receptor.

View Article and Find Full Text PDF

There is substantial evidence in rodent models that chronic exposure to cannabinoids during adolescence can alter the development of neurobiological systems that are implicated in regulating brain activity and seizure. The current study explored whether adolescent cannabinoid treatment affects subsequent, adult seizure susceptibility. Sixty male Wistar Kyoto rats were treated with either the synthetic cannabinoid, CP 55,940 (0.

View Article and Find Full Text PDF