Publications by authors named "Mitchell B Baker"

Everywhere, pests and pathogens evolve resistance to our control efforts, impairing human health and welfare. Developing sustainable solutions to this problem requires working with evolved immune and ecological systems, rather than against these evolutionary forces. We advocate a transdisciplinary approach to resistance based on an evolutionary foundation informed by the concepts of integrated pest management and One Health.

View Article and Find Full Text PDF

Background: Organic pest management eschews synthetic pesticides and insecticide resistance is rarely studied in organically managed systems. Spinosad is a biologically based insecticide used widely by both organic and conventional growers. Colorado potato beetle, Leptinotarsa decemlineata, is infamous for its ability to evolve resistance to insecticides.

View Article and Find Full Text PDF

Climate change can benefit individual species, but when pest species are enhanced by warmer temperatures agricultural productivity may be placed at greater risk. We analyzed the effects of temperature anomaly on arrival date and infestation severity of potato leafhopper, Empoasca fabae Harris, a classic new world long distance migrant, and a significant pest in several agricultural crops. We compiled E.

View Article and Find Full Text PDF

Reduced fitness among resistant versus susceptible individuals slows resistance evolution and makes it easier to manage. A loss of resistance costs could indicate novel adaptations or mutations contributing to resistance. We measured costs of resistance to imidacloprid in a Massachusetts resistant population compared with a Massachusetts susceptible population in 1999 in terms of fecundity, hatching success, egg development time, and sprint speed.

View Article and Find Full Text PDF