Fusarium graminearum is a primary cause of Fusarium head blight (FHB) on wheat and barley. The fungus produces trichothecene mycotoxins that render grain unsuitable for food, feed, or malt. Isolates of F.
View Article and Find Full Text PDFFusarium head blight causes significant yield losses in wheat and other cereals and contaminates grain products with trichothecene mycotoxins. isolates are classified into different chemotypes depending on the type of mycotoxin produced, including the type B trichothecenes 3-acetyl deoxynivalenol (3-ADON), 15-acetyl deoxynivalenol (15-ADON), nivalenol (NIV), and the recently identified type A trichothecene NX-2. Molecular tools to differentiate NX-2 producers from other chemotypes have remained relatively laborious and time consuming.
View Article and Find Full Text PDFThe barley powdery mildew fungus, Blumeria hordei (Bh), secretes hundreds of candidate secreted effector proteins (CSEPs) to facilitate pathogen infection and colonization. One of these, CSEP0008, is directly recognized by the barley nucleotide-binding leucine-rich-repeat (NLR) receptor MLA1 and therefore is designated AVR. Here, we show that AVR and the sequence-unrelated Bh effector BEC1016 (CSEP0491) suppress immunity in barley.
View Article and Find Full Text PDFA crucial step in functional genomics is identifying actively translated ORFs and linking them to biological functions. The challenge lies in identifying short ORFs, as their identification is greatly influenced by data quality and depth. Here, we improved the coverage of super-resolution Ribo-seq in Arabidopsis (Arabidopsis thaliana), revealing uncharacterized translation events for nuclear, chloroplastic, and mitochondrial genes.
View Article and Find Full Text PDFYeast two-hybrid next-generation interaction screening (Y2H-NGIS) uses the output of next-generation sequencing to mine for novel protein-protein interactions. Here, we outline the analytics underlying Y2H-NGIS datasets. Different systems, libraries, and experimental designs comprise Y2H-NGIS methodologies.
View Article and Find Full Text PDFYeast two-hybrid is a powerful approach to discover new protein-protein interactions. Traditional methods involve screening a target protein against a cDNA expression library and assaying individual positive colonies to identify interacting partners. Here we describe a simple approach to perform yeast two-hybrid screens of a cDNA expression library in batch liquid culture.
View Article and Find Full Text PDFThe plant pathogenic fungus is the causal agent of Fusarium head blight (FHB) disease on small-grain cereals. produces trichothecene mycotoxins such as deoxynivalenol (DON) that are required for full virulence. DON must be exported outside the cell to cause FHB disease, a process that may require the involvement of membrane-bound transporters.
View Article and Find Full Text PDFBrassinosteroids (BRs) and Target of Rapamycin Complex (TORC) are two major actors coordinating plant growth and stress responses. Brassinosteroids function through a signaling pathway to extensively regulate gene expression and TORC is known to regulate translation and autophagy. Recent studies have revealed connections between these two pathways, but a system-wide view of their interplay is still missing.
View Article and Find Full Text PDFThe () of barley ( L.) is an effective model for cereal immunity against fungal pathogens. Like many resistance proteins, variants of the MLA coiled-coil nucleotide-binding leucine-rich repeat (CC-NLR) receptor often require the HRS complex (HSP90, RAR1, and SGT1) to function.
View Article and Find Full Text PDFProtein-protein interaction networks are one of the most effective representations of cellular behavior. In order to build these models, high-throughput techniques are required. Next-generation interaction screening (NGIS) protocols that combine yeast two-hybrid (Y2H) with deep sequencing are promising approaches to generate interactome networks in any organism.
View Article and Find Full Text PDFMapping protein-protein interactions at a proteome scale is critical to understanding how cellular signaling networks respond to stimuli. Since eukaryotic genomes encode thousands of proteins, testing their interactions one-by-one is a challenging prospect. High-throughput yeast-two hybrid (Y2H) assays that employ next-generation sequencing to interrogate complementary DNA (cDNA) libraries represent an alternative approach that optimizes scale, cost and effort.
View Article and Find Full Text PDFFront Plant Sci
April 2013
The plasma membrane (PM) regulates diverse processes essential to plant growth, development, and survival in an ever-changing environment. In addition to maintaining normal cellular homeostasis and plant nutrient status, PM proteins perceive and respond to a myriad of environmental cues. Here we review recent advances in the analysis of the plant PM proteome with a focus on the model plant Arabidopsis thaliana.
View Article and Find Full Text PDF