Publications by authors named "Mitch A Garcia"

A pretargeted oncologic positron emission tomography (PET) imaging that leverages the power of supramolecular nanoparticles with in vivo bioorthogonal chemistry was demonstrated for the clinically relevant problem of tumor imaging. The advantages of this approach are that (i) the pharmacokinetics (PKs) of tumor-targeting and imaging agents can be independently altered via chemical alteration to achieve the desired in vivo performance and (ii) the interplay between the two PKs and other controllable variables confers a second layer of control toward improved PET imaging. In brief, we utilized supramolecular chemistry to synthesize tumor-targeting nanoparticles containing transcyclooctene (TCO, a bioorthogonal reactive motif), called TCO⊂SNPs.

View Article and Find Full Text PDF

Background: Although enumeration of circulating tumor cells (CTCs) has shown some clinical value, the pool of CTCs contains a mixture of cells that contains additional information that can be extracted. The authors subclassified CTCs by shape features focusing on nuclear size and related this with clinical information.

Methods: A total of 148 blood samples were obtained from 57 patients with prostate cancer across the spectrum of metastatic states: no metastasis, nonvisceral metastasis, and visceral metastasis.

View Article and Find Full Text PDF

Supramolecular nanosubstrate-mediated delivery (SNSMD) leverages the power of molecular self-assembly and a nanostructured substrate platform for the low toxicity, highly efficient co-delivery of biological factors encapsulated in a nanovector. Human fibroblasts are successfully reprogrammed into induced pluripotent stems and transdifferentiated into induced neuronal-like cells.

View Article and Find Full Text PDF

Unlike tumor biopsies that can be constrained by problems such as sampling bias, circulating tumor cells (CTCs) are regarded as the "liquid biopsy" of the tumor, providing convenient access to all disease sites, including primary tumor and fatal metastases. Although enumerating CTCs is of prognostic significance in solid tumors, it is conceivable that performing molecular and functional analyses on CTCs will reveal much significant insight into tumor biology to guide proper therapeutic intervention. We developed the Thermoresponsive NanoVelcro CTC purification system that can be digitally programmed to achieve an optimal performance for purifying CTCs from non-small cell lung cancer (NSCLC) patients.

View Article and Find Full Text PDF

Substrate-mediated gene delivery is a promising method due to its unique ability to preconcentrate exogenous genes onto designated substrates. However, many challenges remain to enable continuous and multiround delivery of the gene using the same substrates without depositing payloads and immobilizing cells in each round of delivery. Herein we introduce a gene delivery system, nanosubstrate-mediated delivery (NSMD) platform, based on two functional components with nanoscale features, including (1) DNA⊂SNPs, supramolecular nanoparticle (SNP) vectors for gene encapsulation, and (2) Ad-SiNWS, adamantane (Ad)-grafted silicon nanowire substrates.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are one of the most crucial topics in rare cell biology and have become the focus of a significant and emerging area of cancer research. While CTC enumeration is a valid biomarker in prostate cancer, the current FDA-approved CTC technology is unable to detect CTCs in a large portion of late stage prostate cancer patients. Here we introduce the NanoVelcro CTC Chip, a device composed of a patterned silicon nanowire substrate (SiNW) and an overlaid polydimethylsiloxane (PDMS) chaotic mixer.

View Article and Find Full Text PDF

Handpick single cancer cells: a modified NanoVelcro Chip is coupled with ArcturusXT laser capture microdissection (LCM) technology to enable the detection and isolation of single circulating tumor cells (CTCs) from patients with prostate cancer (PC). This new approach paves the way for conducting next-generation sequencing (NGS) on single CTCs.

View Article and Find Full Text PDF

A platform for capture and release of circulating tumor cells is demonstrated by utilizing polymer grafted silicon nanowires. In this platform, integration of ligand-receptor recognition, nanostructure amplification, and thermal responsive polymers enables a highly efficient and selective capture of cancer cells. Subsequently, these captured cells are released upon a physical stimulation with outstanding cell viability.

View Article and Find Full Text PDF

Nanomaterials have been increasingly employed as drug(s)-incorporated vectors for drug delivery due to their potential of maximizing therapeutic efficacy while minimizing systemic side effects. However, there have been two main challenges for these vectors: (i) the existing synthetic approaches are cumbersome and incapable of achieving precise control of their structural properties, which will affect their biodistribution and therapeutic efficacies, and (ii) lack of an early checkpoint to quickly predict which drug(s)-incorporated vectors exhibit optimal therapeutic outcomes. In this work, we utilized a new rational developmental approach to rapidly screen nanoparticle (NP)-based cancer therapeutic agents containing a built-in companion diagnostic utility for optimal therapeutic efficacy.

View Article and Find Full Text PDF

We introduce a new category of nanoparticle-based T(1) MRI contrast agents (CAs) by encapsulating paramagnetic chelated gadolinium(III), i.e., Gd(3+)·DOTA, through supramolecular assembly of molecular building blocks that carry complementary molecular recognition motifs, including adamantane (Ad) and β-cyclodextrin (CD).

View Article and Find Full Text PDF

Nanoparticles are regarded as promising transfection reagents for effective and safe delivery of nucleic acids into a specific type of cells or tissues providing an alternative manipulation/therapy strategy to viral gene delivery. However, the current process of searching novel delivery materials is limited due to conventional low-throughput and time-consuming multistep synthetic approaches. Additionally, conventional approaches are frequently accompanied with unpredictability and continual optimization refinements, impeding flexible generation of material diversity creating a major obstacle to achieving high transfection performance.

View Article and Find Full Text PDF

Targets are essential in experimental nuclear sciences as a source of stationary nuclei for nuclear reactions with ion beams. Typically, targets should be chemically pure, uniform, homogeneous and crack-free over the irradiation area, while also being structurally rigid. The polymer-assisted deposition (PAD) method uses a water-soluble multidentate polymer that chelates metal precursors in solution.

View Article and Find Full Text PDF