Objective: To characterize the clinical and genetic features of cervical dystonia (CD).
Methods: Participants enrolled in the Dystonia Coalition biorepository (NCT01373424) with initial manifestation as CD were included in this study (n = 1,000). Data intake included demographics, family history, and the Global Dystonia Rating Scale.
Background: Isolated blepharospasm (BSP) is a late-onset focal dystonia characterized by involuntary contractions of the orbicularis oculi muscles. Genetic studies of BSP have been limited by the paucity of large multiplex pedigrees. Although sequence variants (SVs) in THAP1 have been reported in rare cases of BSP, the genetic causes of this focal dystonia remain largely unknown.
View Article and Find Full Text PDFObjective: Introduction of a high-fat diet to mice results in a period of voracious feeding, known as hyperphagia, before homeostatic mechanisms prevail to restore energy intake to an isocaloric level. Acute high-fat diet hyperphagia induces astrocyte activation in the rodent hypothalamus, suggesting a potential role of these cells in the homeostatic response to the diet. The objective of this study was to determine physiologic role of astrocytes in the acute homeostatic response to high-fat feeding.
View Article and Find Full Text PDFTranslocator protein 18 kDa (TSPO) is an outer-mitochondrial membrane transporter which has many functions including participation in the mitochondrial permeability transition pore, regulation of reactive oxygen species (ROS), production of cellular energy, and is the rate-limiting step in the uptake of cholesterol. TSPO expression is dysregulated during disease pathologies involving changes in tissue energy demands such as cancer, and is up-regulated in activated macrophages during the inflammatory response. Obesity is associated with decreased energy expenditure, mitochondrial dysfunction, and chronic low-grade inflammation which collectively contribute to the development of the Metabolic Syndrome.
View Article and Find Full Text PDFObesity is associated with chronic low-grade inflammation in peripheral tissues caused, in part, by the recruitment of inflammatory monocytes into adipose tissue. Studies in rodent models have also shown increased inflammation in the central nervous system (CNS) during obesity. The goal of this study was to determine whether obesity is associated with recruitment of peripheral immune cells into the CNS.
View Article and Find Full Text PDFObesity is associated with chronic low-grade inflammation in peripheral tissues, which contributes to the development of comorbidities such as insulin resistance and cardiovascular disease. While less extensively characterized, obesity also promotes inflammation in the central nervous system (CNS) and the consequences of this inflammation for CNS function are only beginning to be examined. In response to CNS insults such as inflammation, astrocytes undergo a process of hypertrophy and hyperplasia known as reactive astrogliosis.
View Article and Find Full Text PDF