The discovery and development of novel antiseizure drugs (ASDs) that are effective in controlling pharmacoresistant spontaneous recurrent seizures (SRSs) continues to represent a significant unmet clinical need. The Epilepsy Therapy Screening Program (ETSP) has undertaken efforts to address this need by adopting animal models that represent the salient features of human pharmacoresistant epilepsy and employing these models for preclinical testing of investigational ASDs. One such model that has garnered increased interest in recent years is the mouse variant of the Intra-Amygdala Kainate (IAK) microinjection model of mesial temporal lobe epilepsy (MTLE).
View Article and Find Full Text PDFObjective: Infection with Theiler's murine encephalomyelitis virus (TMEV) in C57Bl/6J mice results in handling-induced seizures and is useful for evaluating compounds effective against infection-induced seizures. However, to date only a few compounds have been evaluated in this model, and a comprehensive study of antiseizure medications (ASMs) has not yet been performed. Furthermore, as the TMEV infection produces marked neuroinflammation, an evaluation of prototype anti-inflammatory compounds is needed as well.
View Article and Find Full Text PDFObjective: Dravet syndrome (DS) is a rare but catastrophic genetic epilepsy, with 80% of patients carrying a mutation in the SCN1A gene. Currently, no antiseizure drug (ASD) exists that adequately controls seizures. In the clinic, individuals with DS often present first with a febrile seizure and, subsequently, generalized tonic-clonic seizures that can continue throughout life.
View Article and Find Full Text PDFObjective: C57BL/6J mice infected with Theiler's murine encephalomyelitis virus (TMEV) develop acute behavioral seizures in the first week of infection and later develop chronic epilepsy. The TMEV model provides a useful platform to test novel antiseizure therapeutics. The present study was designed to test the efficacy of cannabidiol (CBD) in reducing acute seizures induced by viral infection.
View Article and Find Full Text PDFDigital therapeutics (software as a medical device) and mobile health (mHealth) technologies offer a means to deliver behavioral, psychosocial, disease self-management and music-based interventions to improve therapy outcomes for chronic diseases, including pain and epilepsy. To explore new translational opportunities in developing digital therapeutics for neurological disorders, and their integration with pharmacotherapies, we examined analgesic and antiseizure effects of specific musical compositions in mouse models of pain and epilepsy. The music playlist was created based on the modular progression of Mozart compositions for which reduction of seizures and epileptiform discharges were previously reported in people with epilepsy.
View Article and Find Full Text PDFObjective: Approximately 30% of patients with epilepsy are refractory to existing antiseizure drugs (ASDs). Given that the properties of the central nervous systems of these patients are likely to be altered due to their epilepsy, tissues from rodents that have undergone epileptogenesis might provide a therapeutically relevant disease substrate for identifying compounds capable of attenuating pharmacoresistant seizures. To facilitate the development of such a model, this study describes the effects of classical glutamate receptor antagonists and 20 ASDs on recurrent epileptiform discharges (REDs) in brain slices derived from the kainate-induced status epilepticus model of temporal lobe epilepsy (KA-rats).
View Article and Find Full Text PDFObjective: We previously demonstrated that positive allosteric modulators (PAMs) of metabotropic glutamate subtype 2 (mGlu ) receptors have potential synergistic interactions with the antiseizure drug levetiracetam (LEV). The present study utilizes isobolographic analysis to evaluate the combined administration of JNJ-46356479, a selective and potent mGlu PAM, with LEV as well as sodium valproate (VPA) and lamotrigine (LTG).
Methods: The anticonvulsant efficacy of JNJ-46356479 was evaluated in the 6-Hz model of psychomotor seizures in mice.
Serotonin (5-HT) receptors are important in health and disease, but the existence of 14 subtypes necessitates selective ligands. Previously, the pulicatins were identified as ligands that specifically bound to the subtype 5-HT in the 500 nM to 10 μM range and that exhibited in vitro effects on cultured mouse neurons. Here, we examined the structure-activity relationship of 30 synthetic and natural pulicatin derivatives using binding, receptor functionality, and in vivo assays.
View Article and Find Full Text PDFThe series of experiments herein evaluated prototype drugs representing different mechanisms of antiseizure, antinociceptive or antidepressant action in a battery of preclinical pain models in adult male CF#1 mice (formalin, writhing, and tail flick) and Sprague Dawley rats partial sciatic nerve ligation (PSNL). In the formalin assay, phenytoin (PHT, 6 mg/kg), sodium valproate (VPA, 300 mg/kg), amitriptyline (AMI, 7.5 and 15 mg/kg), gabapentin (GBP, 30 and 70 mg/kg), tiagabine (TGB, 5 and 15 mg/kg), and acetominophen (APAP, 250 and 500 mg/kg) reduced both phases of the formalin response to ≤ 25% of vehicle-treated mice.
View Article and Find Full Text PDFCannabidiol (CBD) is a cannabinoid component of marijuana that has no significant activity at cannabinoid receptors or psychoactive effects. There is considerable interest in CBD as a therapy for epilepsy. Almost a third of epilepsy patients are not adequately controlled by clinically available anti-seizure drugs (ASDs).
View Article and Find Full Text PDFThe potential clinical utility of galanin peptidic analogs has been hindered by poor metabolic stability, lack of brain penetration, and hyperglycemia. In addition to possessing potent anticonvulsant efficacy, galanin analogs are analgesic in various assays. The purpose of these studies was to evaluate the lead galanin receptor type 2 (GalR2)-preferring analog, NAX 810-2, in various pain assays, as well as determine any potential for insulin inhibition, growth hormone stimulation, and cognitive impairment.
View Article and Find Full Text PDFThe successful identification of promising investigational therapies for the treatment of epilepsy can be credited to the use of numerous animal models of seizure and epilepsy for over 80 years. In this time, the maximal electroshock test in mice and rats, the subcutaneous pentylenetetrazol test in mice and rats, and more recently the 6 Hz assay in mice, have been utilized as primary models of electrically or chemically-evoked seizures in neurologically intact rodents. In addition, rodent kindling models, in which chronic network hyperexcitability has developed, have been used to identify new agents.
View Article and Find Full Text PDFObjective: The metabotropic glutamate receptor subtype 2 (mGlu ) possesses both orthosteric and allosteric modulatory sites, are expressed in the frontal cortex and limbic structures, and can affect excitatory synaptic transmission. Therefore, mGlu is a potential therapeutic target in the treatment of epilepsy. The present study seeks to evaluate the anticonvulsant potential of mGlu -acting compounds.
View Article and Find Full Text PDFChronic pain is a multifactorial disease comprised of both inflammatory and neuropathic components that affect ∼20% of the world's population. sec-Butylpropylacetamide (SPD) is a novel amide analogue of valproic acid (VPA) previously shown to possess a broad spectrum of anticonvulsant activity. In this study, we defined the pharmacokinetic parameters of SPD in rat and mouse, and then evaluated its antinociceptive potential in neuropathic and acute inflammatory pain models.
View Article and Find Full Text PDFInvestigator-administered nicotine alters neurotensin and substance P levels in Sprague-Dawley rats. This finding suggested a role of the dopamine-related endogenous neuropeptides in nicotine addiction. We sought to extend this observation by determining the responses of neurotensin and substance P systems (assessed using radioimmunoassay) in male and female rats following nicotine self-administration (SA).
View Article and Find Full Text PDFBackground: Previous studies have demonstrated that methamphetamine abuse leads to memory deficits and these are associated with relapse. Furthermore, extensive evidence indicates that nicotine prevents and/or improves memory deficits in different models of cognitive dysfunction and these nicotinic effects might be mediated by hippocampal or cortical nicotinic acetylcholine receptors. The present study investigated whether nicotine attenuates methamphetamine-induced novel object recognition deficits in rats and explored potential underlying mechanisms.
View Article and Find Full Text PDFNeurotensin receptors have been studied as molecular targets for the treatment of pain, schizophrenia, addiction, or cancer. Neurotensin (NT) and Contulakin-G, a glycopeptide isolated from a predatory cone snail Conus geographus, share a sequence similarity at the C-terminus, which is critical for activation of neurotensin receptors. Both peptides are potent analgesics, although affinity and agonist potency of Contulakin-G toward neurotensin receptors are significantly lower, as compared to those for NT.
View Article and Find Full Text PDFThere are ongoing efforts to develop pain therapeutics with novel mechanisms of action that avoid common side effects associated with other analgesics. The anticonvulsant neuropeptide galanin is a potent regulator of neuronal excitability and has a well established role in pain modulation, making it a potential target for novel therapies. Our previous efforts focused on improving blood-brain-barrier penetration and enhancing the metabolic stability of galanin analogs to protect against seizures.
View Article and Find Full Text PDFViral infection of the CNS can result in encephalitis and acute seizures, increasing the risk for later-life epilepsy. We have previously characterized a novel animal model of temporal lobe epilepsy that recapitulates key sequela in the development of epilepsy following viral infection. C57BL/6J mice inoculated with the Daniel's strain of Theiler's Murine Encephalomyelitis Virus (TMEV; 3×10(5) PFU, i.
View Article and Find Full Text PDFDelivery of neuropeptides into the central and/or peripheral nervous systems supports development of novel neurotherapeutics for the treatment of pain, epilepsy and other neurological diseases. Our previous work showed that the combination of lipidization and cationization applied to anticonvulsant neuropeptides galanin (GAL) and neuropeptide Y (NPY) improved their penetration across the blood-brain barrier yielding potent antiepileptic lead compounds, such as Gal-B2 (NAX 5055) or NPY-B2. To dissect peripheral and central actions of anticonvulsant neuropeptides, we rationally designed, synthesized and characterized GAL and NPY analogues containing monodisperse (discrete) oligoethyleneglycol-lysine (dPEG-Lys).
View Article and Find Full Text PDFHydrocarbon stapling is an effective strategy to stabilize the helical conformation of bioactive peptides. Here we describe application of stapling to anticonvulsant neuropeptides, galanin (GAL) and neuropeptide Y (NPY), that are implicated in modulating seizures in the brain. Dicarba bridges were rationally introduced into minimized analogs of GAL and NPY resulting in increased α-helical content, in vitro metabolic stability and n-octanol/water partitioning coefficient (logD).
View Article and Find Full Text PDFUsing molecular phylogeny has accelerated the discovery of peptidic ligands targeted to ion channels and receptors. One clade of venomous cone snails, Asprella, appears to be significantly enriched in conantokins, antagonists of N-methyl d-aspartate receptors (NMDARs). Here, we describe the characterization of two novel conantokins from Conus rolani, including conantokin conRl-B that has shown an unprecedented selectivity for blocking NMDARs that contain NR2B subunits.
View Article and Find Full Text PDFConantokins are short peptides derived from the venoms of marine cone snails that act as antagonists of the N-methyl-D-aspartate (NMDA) receptor family of excitatory glutamate receptors. These peptides contain γ-carboxyglutamic acid residues typically spaced at i,i+4 and/or i,i+7 intervals, which by chelating divalent cations induce and stabilize helical conformation of the peptide. Introduction of a dicarba bridge (or a staple) can covalently stabilize peptide helicity and improve its pharmacological properties.
View Article and Find Full Text PDFSeizure activity can alter GABA transporter and osmoprotective gene expression, which may be involved in the pathogenesis of epilepsy. However, the response of the betaine/GABA transporter (BGT1) is unknown. The goal of the present study was to compare the expression of BGT1 mRNA to that of other osmoprotective genes and GABA transporters following status epilepticus (SE).
View Article and Find Full Text PDF