Publications by authors named "Misteli T"

The ability to visualize protein dynamics and biological processes by in vivo microscopy is revolutionizing many areas of biology. These methods generate large, kinetically complex data sets, which often cannot be intuitively interpreted. The combination of dynamic imaging and computational modelling is emerging as a powerful tool for the quantitation of biophysical properties of molecules and processes.

View Article and Find Full Text PDF

In vivo microscopy has recently revealed the dynamic nature of many cellular organelles. The dynamic properties of several cellular structures are consistent with a role for self-organization in their formation, maintenance, and function; therefore, self-organization might be a general principle in cellular organization.

View Article and Find Full Text PDF

Mutations in the human tau gene cause frontotemporal dementia and Parkinsonism associated with chromosome 17 (FTDP-17). One of the major disease mechanisms in FTDP-17 is the increased inclusion of tau exon 10 during pre-mRNA splicing. Here we show that modified oligonucleotides directed against the tau exon 10 splice junctions suppress inclusion of tau exon 10.

View Article and Find Full Text PDF

Condensation of the chromatin fiber and transcriptional inhibition during mitosis is associated with the redistribution of many DNA- and chromatin-binding proteins, including members of the high-mobility-group N (HMGN) family. Here we study the mechanism governing the organization of HMGN proteins in mitosis. Using site-specific antibodies and quantitative gel analysis with proteins extracted from synchronized HeLa cells, we demonstrate that, during mitosis, the conserved serine residues in the nucleosomal binding domain (NBD) of this protein family are highly and specifically phosphorylated.

View Article and Find Full Text PDF

The major functions of the cell nucleus, including transcription, pre-mRNA splicing and ribosome assembly, have been studied extensively by biochemical, genetic and molecular methods. An overwhelming amount of information about their molecular mechanisms is available. In stark contrast, very little is known about how these processes are integrated into the structural framework of the cell nucleus and how they are spatially and temporally co-ordinated within the three-dimensional confines of the nucleus.

View Article and Find Full Text PDF

The linker histone H1 is believed to be involved in chromatin organization by stabilizing higher-order chromatin structure. Histone H1 is generally viewed as a repressor of transcription as it prevents the access of transcription factors and chromatin remodelling complexes to DNA. Determining the binding properties of histone H1 to chromatin in vivo is central to understanding how it exerts these functions.

View Article and Find Full Text PDF

Mammalian cell nucleoli disassemble at the onset of M-phase and reassemble during telophase. Recent studies showed that partially processed preribosomal RNA (pre-rRNA) is preserved in association with processing components in the perichromosomal regions (PRs) and in particles called nucleolus-derived foci (NDF) during mitosis. Here, the dynamics of nucleolar reassembly were examined for the first time in living cells expressing fusions of the processing-related proteins fibrillarin, nucleolin, or B23 with green fluorescent protein (GFP).

View Article and Find Full Text PDF

The MKK3/6-p38 pathway has been found to induce the relocalization of premessenger-RNA splicing factors from the nucleus to the cytoplasm. This represents the first physiological mechanism that alters the nuclear ratios of splicing factors and modulates alternative splice-site choice in vivo.

View Article and Find Full Text PDF

Gene expression is a fundamental cellular process. The basic mechanisms involved in expression of genes have been characterized at the molecular level. A major challenge is now to uncover how transcription, RNA processing and RNA export are organized within the cell nucleus, how these processes are coordinated with each other and how nuclear architecture influences gene expression and regulation.

View Article and Find Full Text PDF

The mammalian cell nucleus contains numerous sub-compartments, which have been implicated in essential processes such as transcription and splicing. The mechanisms by which nuclear compartments are formed and maintained are unclear. More fundamentally, it is not known how proteins move within the cell nucleus.

View Article and Find Full Text PDF

Phosphorothioate oligodeoxynucleotides (P=S ODNs) are frequently used as antisense agents to specifically interfere with the expression of cellular target genes. However, the cell biological properties of P=S ODNs are poorly understood. Here we show that P=S ODNs were able to continuously shuttle between the nucleus and the cytoplasm and that shuttling P=S ODNs retained their ability to act as antisense agents.

View Article and Find Full Text PDF

Biochemical evidence indicates that pre-mRNA splicing factors physically interact with the C-terminal domain of the largest subunit of RNA polymerase II. We have investigated the in vivo function of this interaction. In mammalian cells, truncation of the CTD of RNA pol II LS prevents the targeting of the splicing machinery to a transcription site.

View Article and Find Full Text PDF

Recent development of in vivo microscopy techniques, including green fluorescent proteins, has allowed the visualization of a wide range of dynamic processes in living cells. For quantitative and visual interpretation of such processes, new concepts for time-resolved image analysis and continuous time-space visualization are required. Here, we describe a versatile and fully automated approach consisting of four techniques, namely highly sensitive object detection, fuzzy logic-based dynamic object tracking, computer graphical visualization, and measurement in time-space.

View Article and Find Full Text PDF

Many pre-mRNA splicing factors are phosphorylated in vivo, but the role of this modification has been unclear. Recent observations suggest that phosphorylation modulates protein-protein interactions within the spliceosome, thereby contributing to dynamic structural reorganization of the spliceosome during splicing.

View Article and Find Full Text PDF

Expression of most RNA polymerase II transcripts requires the coordinated execution of transcription, splicing, and 3' processing. We have previously shown that upon transcriptional activation of a gene in vivo, pre-mRNA splicing factors are recruited from nuclear speckles, in which they are concentrated, to sites of transcription (Misteli, T., J.

View Article and Find Full Text PDF

Recent cell biological observations have provided new insights into how transcription, pre-mRNA splicing and 3' processing are organized and coordinated with each other in the mammalian cell nucleus. Morphological observations are supported by biochemical evidence that suggests physical interactions between components of the transcription and RNA processing machineries. A working model of the cellular organization of gene expression is now emerging.

View Article and Find Full Text PDF

The recent emergence of an autofluorescent protein, the green fluorescent protein (GFP), has opened the door for the convenient use of intact living cells and organisms as experimental systems in fields ranging from cell biology to biomedicine. We present an overview of some of the major applications of GFP, namely its use in protein tagging and in monitoring gene expression as well as its potential in a variety of biological screens.

View Article and Find Full Text PDF

SR proteins are required for constitutive pre-mRNA splicing and also regulate alternative splice site selection in a concentration-dependent manner. They have a modular structure that consists of one or two RNA-recognition motifs (RRMs) and a COOH-terminal arginine/serine-rich domain (RS domain). We have analyzed the role of the individual domains of these closely related proteins in cellular distribution, subnuclear localization, and regulation of alternative splicing in vivo.

View Article and Find Full Text PDF

Pre-mRNA splicing is a predominantly co-transcriptional event which involves a large number of essential splicing factors. Within the mammalian cell nucleus, most splicing factors are concentrated in 20-40 distinct domains called speckles. The function of speckles and the organization of cellular transcription and pre-mRNA splicing in vivo are not well understood.

View Article and Find Full Text PDF

Controlled execution of transcription and pre-mRNA splicing is crucial for proper gene expression. The organization of these essential events within the cell nucleus is only beginning to be understood. Here, we describe a model for the cellular arrangement of transcription and pre-mRNA splicing based on recent biochemical and morphological data: transcription and pre-mRNA splicing are spatially and temporally coordinated, and protein phosphorylation regulates both the activity and the subnuclear localization of pre-mRNA splicing factors in nuclear subcompartments.

View Article and Find Full Text PDF

HeLa cell nuclei were permeabilized and reconstituted with nuclear extract to identify soluble nuclear factors which play a role in the organization of pre-mRNA splicing factors in the mammalian cell nucleus. Permeabilized nuclei reconstituted with nuclear extract were active in transcription and DNA replication and nuclear speckles containing pre-mRNA splicing factors were maintained over several hours independent of soluble nuclear components. The characteristic rounding up of nuclear speckles in response to inhibition of RNA polymerase II seen in vivo was reproduced in permeabilized cells and was strictly dependent on a catalytic activity present in the nuclear extract.

View Article and Find Full Text PDF