Publications by authors named "Missael Garcia"

Significance: Near-infrared fluorescence image-guided surgery is often thought of as a spectral imaging problem where the channel count is the critical parameter, but it should also be thought of as a multiscale imaging problem where the field of view and spatial resolution are similarly important.

Aim: Conventional imaging systems based on division-of-focal-plane architectures suffer from a strict relationship between the channel count on one hand and the field of view and spatial resolution on the other, but bioinspired imaging systems that combine stacked photodiode image sensors and long-pass/short-pass filter arrays offer a weaker tradeoff.

Approach: In this paper, we explore how the relevant changes to the image sensor and associated image processing routines affect image fidelity during image-guided surgeries for tumor removal in an animal model of breast cancer and nodal mapping in women with breast cancer.

View Article and Find Full Text PDF

Plastic pollution in the ocean is an increasingly detrimental issue for marine organisms. As a form of polarized light pollution, transparent plastic debris may be more visible and pose additional threats to organisms that can detect and interpret polarized light. Plastic can mimic the visual features of common marine prey items, such as transparent gelatinous zooplankton, which may lead to more significant plastic ingestion.

View Article and Find Full Text PDF

Cancer affects one in three people worldwide. Surgery remains the primary curative option for localized cancers, but good prognoses require complete removal of primary tumors and timely recognition of metastases. To expand surgical capabilities and enhance patient outcomes, we developed a six-channel color/near-infrared image sensor inspired by the mantis shrimp visual system that enabled near-infrared fluorescence image guidance during surgery.

View Article and Find Full Text PDF

Image-guided surgery can enhance cancer treatment by decreasing, and ideally eliminating, positive tumor margins and iatrogenic damage to healthy tissue. Current state-of-the-art near-infrared fluorescence imaging systems are bulky and costly, lack sensitivity under surgical illumination, and lack co-registration accuracy between multimodal images. As a result, an overwhelming majority of physicians still rely on their unaided eyes and palpation as the primary sensing modalities for distinguishing cancerous from healthy tissue.

View Article and Find Full Text PDF

Multispectral, hyperspectral, polarimetric, and other types of multichannel imaging spectrometers are coming into common use for a variety of applications, including remote sensing, material identification, forensics, and medical diagnosis. These instruments are often bulky and intolerant of field abuse, so designing compact, reliable, portable, and robust devices is a priority. In contrast to most engineering designs, animals have been building compact and robust multichannel imaging systems for millennia-their eyes.

View Article and Find Full Text PDF

Polarization imaging can reveal orthogonal information with respect to color about the structural composition of biological tissue, and with the advance of superior polarimeters its use for biomedical applications has proliferated in the last decade. Polarimetry can be used in pre-clinical and clinical settings for the early detection of cancerous tissue. Polarization-based endoscopy with the complementary near-infrared fluorescence imaging modality improves the early diagnosis of flat cancerous lesions in colorectal tumor models.

View Article and Find Full Text PDF

Peripheral arterial disease (PAD) is a highly prevalent disease process that afflicts more than 20% of individuals with diabetes. Progression of PAD in the setting of diabetes can lead to critical limb ischemia (CLI), which is associated with increased risk of wounds, gangrene, and limb loss. Prompt noninvasive evaluation of limbs affected by PAD progression and CLI is currently limited.

View Article and Find Full Text PDF

The polarization properties of reflected light capture important information about the object's inherent properties: material composition, i.e. index of refraction and scattering properties, and shape of the object, i.

View Article and Find Full Text PDF

Colitis-associated cancer (CAC) arises from premalignant flat lesions of the colon, which are difficult to detect with current endoscopic screening approaches. We have developed a complementary fluorescence and polarization reporting strategy that combines the unique biochemical and physical properties of dysplasia and cancer for real-time detection of these lesions. Using azoxymethane-dextran sodium sulfate (AOM-DSS) treated mice, which recapitulates human CAC and dysplasia, we show that an octapeptide labeled with a near-infrared (NIR) fluorescent dye selectively identified all precancerous and cancerous lesions.

View Article and Find Full Text PDF