The process of memory and learning in biological systems is multimodal, as several kinds of input signals cooperatively determine the weight of information transfer and storage. This study describes a peptide-based platform of materials and devices that can control the coupled conduction of protons and electrons and thus create distinct regions of synapse-like performance depending on the proton activity. We utilized tyrosine-rich peptide-based films and generalized our principles by demonstrating both memristor and synaptic devices.
View Article and Find Full Text PDFUnderstanding how electrons and protons move in a coupled manner and affect one another is important to the design of proton-electron conductors and achieving biological transport in synthetic materials. In this study, a new methodology is proposed that allows for the quantification of the degree of coupling between electrons and protons in tyrosine-rich peptides and metal oxide hybrid films at room temperature under a voltage bias. This approach is developed according to the Onsager principle, which has been thoroughly established for the investigation of mixed ion-electron conductors with electron and oxide ion vacancies as carriers at high temperatures.
View Article and Find Full Text PDFAdv Sci (Weinh)
February 2019
The self-assembly of biomolecules can provide a new approach for the design of functional systems with a diverse range of hierarchical nanoarchitectures and atomically defined structures. In this regard, peptides, particularly short peptides, are attractive building blocks because of their ease of establishing structure-property relationships, their productive synthesis, and the possibility of their hybridization with other motifs. Several assembling peptides, such as ionic-complementary peptides, cyclic peptides, peptide amphiphiles, the Fmoc-peptide, and aromatic dipeptides, are widely studied.
View Article and Find Full Text PDFHere, we explore the possibility of using peptide-based materials as a membrane in solid-state nanopore devices in an effort to develop a sequence-specific, programmable biological membrane platform. We use a recently developed tyrosine-mediated self-assembly peptide sheet. At the air/water interface, the 5mer peptide YFCFY self-assembles into a uniform and robust two-dimensional (2D) structure, and the peptide sheet is easily transferred to a low-noise glass substrate.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2018
Black phosphorus (BP) has shown great potential as a semiconductor material beyond graphene and MoS because of its intrinsic band gap and high mobility. Moreover, the biocompatibility of the final biodegradation products of BP has led to extensive research on biomedical applications. Herein, physically transient field-effect transistors (FETs) based on black phosphorus have been demonstrated using peptide insulator as a gate dielectric layer.
View Article and Find Full Text PDF