Publications by authors named "Miskovic-Stankovic V"

Medical implants have improved the quality of life of many patients. However, surgical intervention may eventually lead to implant microbial contamination. The aims of this research were to develop an easy, robust, quantitative assay to assess surface antimicrobial activities, especially the anti-nascent biofilm activity, and to identify control surfaces, allowing for international comparisons.

View Article and Find Full Text PDF

This study presents a new two compartmental model with, recently defined General fractional derivative. We review that concept of General fractional derivative and use the kernel function that generalizes the classical Caputo derivative in a mathematically consistent way. Next we use this model to study the release of antibiotic gentamicin in poly (vinyl alcohol)/gentamicin(PVA/Gent) hydrogel aimed for wound dressing in medical treatment of deep chronical wounds.

View Article and Find Full Text PDF

Biocompatibility of materials is one of the most important conditions for their successful application in tissue regeneration and repair. Cell-surface interactions stimulate adhesion and activation of macrophages whose acquaintance can assist in designing novel biomaterials that promote favorable macrophage-biomaterial surface interactions for clinical application. This study is designed to determine the distribution and number of macrophages as a means of biocompatibility evaluation of two newly synthesized materials [silver/poly(vinyl alcohol) (Ag/PVA) and silver/poly(vinyl alcohol)/graphene (Ag/PVA/Gr) nanocomposite hydrogels] , with approval of the Ethics Committee of the Faculty of Veterinary Medicine, University of Belgrade.

View Article and Find Full Text PDF

Current trends in biomaterials science address the issue of integrating artificial materials as orthopedic or dental implants with biological materials, e.g., patients' bone tissue.

View Article and Find Full Text PDF

The electrophoretic deposition process (EPD) was utilized to produce bioactive hydroxyapatite/chitosan (HAP/CS) and hydroxyapatite/chitosan/gentamicin (HAP/CS/Gent) coatings on titanium. The bioactivity of newly synthesized composite coatings was investigated in the simulated body fluid (SBF) and examined by X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The obtained results revealed carbonate-substituted hydroxyapatite after immersion in SBF, emphasizing the similarity of the biomimetically grown HAP with the naturally occurring apatite in the bone.

View Article and Find Full Text PDF

Electrophoretic deposition process (EPD) was successfully used for obtaining graphene (Gr)-reinforced composite coating based on hydroxyapatite (HAP), chitosan (CS), and antibiotic gentamicin (Gent), from aqueous suspension. The deposition process was performed as a single step process at a constant voltage (5 V, deposition time 12 min) on pure titanium foils. The influence of graphene was examined through detailed physicochemical and biological characterization.

View Article and Find Full Text PDF

In this work, functional characterization of biomaterials concerning potential application as articular cartilage implants was performed by using a biomimetic bioreactor with dynamic compression in the physiological regime (10% strain, 0.84 Hz frequency, 1 h on/1 h off). Specifically, two alginate types with low (LG) and high (HG) guluronic/mannuronic residue ratios with electrochemically synthesized silver nanoparticles (AgNPs) were evaluated.

View Article and Find Full Text PDF

Composite coating of antibiotic gentamicin (Gent), natural polymer chitosan (CS), and hydroxyapatite (HAP) was successfully assessed by applying the electrophoretic deposition (EPD) technique. EPD was performed under optimized deposition conditions (5 V, 12 min) on pure titanium plates, to obtain HAP/CS and HAP/CS/Gent composite coatings in a single step from three-component aqueous suspension, with favorable antibacterial properties. Composite coatings were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron analysis, confirming the formation of composite HAP/CS and HAP/CS/Gent coatings on the titanium surface, which is due to intermolecular hydrogen bonds.

View Article and Find Full Text PDF

In the present study, possibilities for using novel nanocomposites based on alginate and silver nanoparticles for wound treatment were investigated in a second-degree thermal burn model in Wistar rats. Silver nanoparticles (AgNPs) were electrochemically synthesized in alginate solutions that were further utilized to obtain the Ag/alginate solution and microfibers for subsequent in vivo studies. Daily applications of the Ag/alginate colloid solution, containing AgNPs, alginate and ascorbic acid (G3), wet Ag/alginate microfibers containing AgNPs (G5) and dry Ag/alginate microfibers containing AgNPs (G6) were compared to treatments with a commercial cream containing silver sulfadiazine (G2) and a commercial Ca-alginate wound dressing containing silver ions (G4), as well as to the untreated controls (G1).

View Article and Find Full Text PDF

We report on thin film deposition by matrix-assisted pulsed laser evaporation of simple hydroxyapatite (HA) or silver (Ag) doped HA combined with the natural biopolymer organosolv lignin (Lig) (Ag:HA-Lig). Solid cryogenic target of aqueous dispersions of Ag:HA-Lig composite and its counterpart without silver (HA-Lig) were prepared for evaporation using a KrF* excimer laser source. The expulsed material was assembled onto TiO2/Ti substrata or silicon wafers and subjected to physical-chemical investigations.

View Article and Find Full Text PDF

The plasma electrolytic oxidation (PEO) of aluminum in sodium tungstate (Na(2)WO(4) · (2)H(2)O) and Na(2)WO(4) · (2)H(2)O doped with Zr was analyzed in order to obtain oxide coatings with improved corrosion resistance. The influence of current density in PEO process and anodization time was investigated, as well as the influence of Zr, with the aim to find out how they affect the chemical content, morphology, surface roughness, and corrosion stability of oxide coatings. It was shown that the presence of Zr increases the corrosion stability of oxide coatings for all investigated PEO times.

View Article and Find Full Text PDF

In this work, we present a comprehensive approach to evaluation of alginate microbeads with included silver nanoparticles (AgNPs) at the concentration range of 0.3-5mM for potential biomedical use by combining cytotoxicity, antibacterial activity, and silver release studies. The microbeads were investigated regarding drying and rehydration showing retention of ∼ 80-85% of the initial nanoparticles as determined by UV-vis and SEM analyses.

View Article and Find Full Text PDF

Hydroxyapatite (HAP) is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig) is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat.

View Article and Find Full Text PDF

Silver/poly(N-vinyl-2-pyrrolidone) (Ag/PVP) nanocomposites containing Ag nanoparticles at different concentrations were synthesized using γ-irradiation. Cytotoxicity of the obtained nanocomposites was determined by MTT assay in monolayer cultures of normal human immunocompetent peripheral blood mononuclear cells (PBMC) that were either non-stimulated or stimulated to proliferate by mitogen phytohemagglutinin (PHA), as well as in human cervix adenocarcinoma cell (HeLa) cultures. Silver release kinetics and mechanical properties of nanocomposites were investigated under bioreactor conditions in the simulated body fluid (SBF) at 37°C.

View Article and Find Full Text PDF

Hydroxyapatite is the most suitable biocompatible material for bone implant coatings. However, its brittleness is a major obstacle, and that is why, recently, research focused on creating composites with various biopolymers. In this study, hydroxyapatite coatings were modified with lignin in order to attain corrosion stability and surface porosity that enables osteogenesis.

View Article and Find Full Text PDF

Alginate colloid solution containing electrochemically synthesized silver nanoparticles (AgNPs) was investigated regarding the nanoparticle stabilization and possibilities for production of alginate based nanocomposite hydrogels in different forms. AgNPs were shown to continue to grow in alginate solutions for additional 3 days after the synthesis by aggregative mechanism and Ostwald ripening. Thereafter, the colloid solution remains stable for 30 days and could be used alone or in mixtures with aqueous solutions of poly(vinyl alcohol) (PVA) and poly(N-vinyl-2-pyrrolidone) (PVP) while preserving AgNPs as verified by UV-Vis spectroscopy studies.

View Article and Find Full Text PDF