Versatile, efficient and robust (pre)catalysts are pivotal in accelerating the discovery and optimization of chemical reactions, shaping diverse synthetic fields such as cross-coupling, C-H functionalization and polymer chemistry. Yet, their scarcity in certain domains has hindered the advancement and adoption of new applications. Here we present a highly reactive air- and moisture-stable ruthenium precatalyst [(BuCN)Ru(HO)](BF), featuring a key exchangeable water ligand.
View Article and Find Full Text PDFAn electrochemical method for the azidocyanation of alkenes 1,4-nitrile migration has been developed. This organic oxidant free method is applicable across various alkene containing cyanohydrins, and provides access to a broad range of synthetically useful 1,2-azidonitriles (28 examples). This methodology was extended to an electrochemical alkene sulfonylcyanation procedure, as well as to access a trifunctionalized hexanenitrile from a malononitrile starting material.
View Article and Find Full Text PDFHerein, we report a new electrochemical method for alkoxy radical generation from alcohols using a proton-coupled electron transfer (PCET) approach, showcased via the deconstructive functionalization of cycloalkanols. The electrochemical method is applicable across a diverse array of substituted cycloalkanols, accessing a broad range of synthetically useful distally functionalized ketones. The orthogonal derivatization of the products has been demonstrated through chemoselective transformations, and the electrochemical process has been performed on a gram scale in continuous single-pass flow.
View Article and Find Full Text PDFAn electrochemical method for the oxidative -selective C(sp)-H chlorination of acrylamides has been developed. This catalyst and organic oxidant free method is applicable across various substituted tertiary acrylamides, and provides access to a broad range of synthetically useful -β-chloroacrylamides in good yields (22 examples, 73% average yield). The orthogonal derivatization of the products was demonstrated through chemoselective transformations and the electrochemical process was performed on gram scale in flow.
View Article and Find Full Text PDFA manganese-catalyzed electrochemical deconstructive chlorination of cycloalkanols has been developed. This electrochemical method provides access to alkoxy radicals from alcohols and exhibits a broad substrate scope, with various cyclopropanols and cyclobutanols converted into synthetically useful β- and γ-chlorinated ketones (40 examples). Furthermore, the combination of recirculating flow electrochemistry and continuous inline purification was employed to access products on a gram scale.
View Article and Find Full Text PDF