Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity.
View Article and Find Full Text PDFActivin receptor type 1 (ACVR1; ALK2) and activin receptor like type 1 (ACVRL1; ALK1) are transforming growth factor beta family receptors that integrate extracellular signals of bone morphogenic proteins (BMPs) and activins into Mothers Against Decapentaplegic homolog 1/5 (SMAD1/SMAD5) signaling complexes. Several activating mutations in ALK2 are implicated in fibrodysplasia ossificans progressiva (FOP), diffuse intrinsic pontine gliomas, and ependymomas. The ALK2 R206H mutation is also present in a subset of endometrial tumors, melanomas, non-small lung cancers, and colorectal cancers, and ALK2 expression is elevated in pancreatic cancer.
View Article and Find Full Text PDFCancer Res Commun
December 2024
HRD is common in cancer and can be exploited therapeutically, as it sensitizes cells to DNA-damaging agents. Here, we scored more than 1,300 cancer cell lines for HRD using two different bioinformatic approaches, thereby enabling large-scale analyses that provide insights into the etiology and features of HRD.
View Article and Find Full Text PDFPeriodontal disease poses significant challenges to the long-term stability of oral health by destroying the supporting structures of teeth. Guided tissue regeneration techniques, particularly barrier membranes, enable local regeneration by providing an isolated, protected compartment for osseous wound healing while excluding epithelial tissue. Here, this study reports on a thermosensitive periodontal membrane (TSPM) technology designed to overcome the mechanical limitations of current membranes through a semi-interpenetrating network of high molecular weight poly(L-lactic acid) (PLLA) and in situ-polymerized mesh of poly(ε-caprolactone)diacrylate (PCL-DA), and poly lactide-co-glycolide diacrylate (PLGA-DA).
View Article and Find Full Text PDFObjective: Bone homeostasis relies on several contributing factors, encompassing growth factors and mechanical stimuli. While bone morphogenetic protein (BMP) signaling is acknowledged for its essential role in skeletal development, its specific impact on mandibular morphogenesis remains unexplored. Here, we investigated the involvement of BMP signaling and mechanical loading through mastication in postnatal mandibular morphogenesis.
View Article and Find Full Text PDFAbnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study using genetic mouse models, we dissected the roles of bone morphogenetic protein (BMP) receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions.
View Article and Find Full Text PDFElastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood.
View Article and Find Full Text PDFIntroduction: Nontraumatic biliary rupture and retroperitoneal biloma infrequently occur. Here, we report a case of retroperitoneal biloma due to spontaneous left hepatic duct perforation, which was difficult to differentiate from a perirenal abscess.
Case Presentation: A 94-year-old female patient was hospitalized with symptoms of fatigue and right back pain that lasted for 5 days.
Currently available biotherapeutics for the treatment of osteoporosis lack explicit mechanisms for bone localization, potentially limiting efficacy and inducing off-target toxicities. While various strategies have been explored for targeting the bone surface, critical aspects remain poorly understood, including the optimal affinity ligand, the role of binding avidity and circulation time, and, most importantly, whether or not this strategy can enhance the functional activity of clinically relevant protein therapeutics. To investigate, we generated fluorescent proteins (eg, mCherry) with site-specifically attached small molecule (bisphosphonate) or peptide (deca-aspartate, D10) affinity ligands.
View Article and Find Full Text PDFCraniofacial anomalies, especially midline facial defects, are among the most common birth defects in patients and are associated with increased mortality or require lifelong treatment. During mammalian embryogenesis, specific instructions arising at genetic, signaling, and metabolic levels are important for stem cell behaviors and fate determination, but how these functionally relevant mechanisms are coordinated to regulate craniofacial morphogenesis remain unknown. Here, we report that bone morphogenetic protein (BMP) signaling in cranial neural crest cells (CNCCs) is critical for glycolytic lactate production and subsequent epigenetic histone lactylation, thereby dictating craniofacial morphogenesis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2024
Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication.
View Article and Find Full Text PDFStress fractures occur as a result of repeated mechanical stress on bone and are commonly found in the load-bearing lower extremities. Macrophages are key players in the immune system and play an important role in bone remodeling and fracture healing. However, the role of macrophages in stress fractures has not been adequately addressed.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2023
Insight into the molecular mechanisms governing the development and maintenance of pluripotency is important for understanding early development and the use of stem cells in regenerative medicine. We demonstrate the selective inhibition of mTORC1 signaling is important for developing the inner cell mass (ICM) and the self-renewal of human embryonic stem cells. S6K suppressed the expression and function of pluripotency-related transcription factors (PTFs) OCT4, SOX2, and KLF4 through phosphorylation and ubiquitin proteasome-mediated protein degradation, indicating that S6K inhibition is required for pluripotency.
View Article and Find Full Text PDFAbnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study, we dissected the roles of BMP receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions.
View Article and Find Full Text PDFHistone lactylation on its lysine (K) residues has been reported to have indispensable roles in lung fibrosis, embryogenesis, neural development, inflammation, and tumors. However, little is known about the lactylation activity towards histone lysine residue during tooth development. We investigated the dynamic patterns of lactate-derived histone lysine lactylation (Kla) using a pan-Kla antibody during murine tooth development, including lower first molar and lower incisor.
View Article and Find Full Text PDFTaste papillae are specialized organs, each of which comprises an epithelial wall hosting taste buds and a core of mesenchymal tissue. In the present study, we report that during early taste papilla development in mouse embryos, bone morphogenetic protein (BMP) signaling mediated by type 1 receptor ALK3 in the tongue mesenchyme is required for epithelial Wnt/β-catenin activity and taste papilla differentiation. Mesenchyme-specific knockout (cKO) of Alk3 using Wnt1-Cre and Sox10-Cre resulted in an absence of taste papillae at E12.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2023
Skeletal stem and progenitor cells (SSPCs) are the multi-potent, self-renewing cell lineages that form the hematopoietic environment and adventitial structures of the skeletal tissues. Skeletal tissues are responsible for a diverse range of physiological functions because of the extensive differentiation potential of SSPCs. The differentiation fates of SSPCs are shaped by the physical properties of their surrounding microenvironment and the mechanical loading forces exerted on them within the skeletal system.
View Article and Find Full Text PDFCranial neural crest cells (NCCs) are the origin of the anterior part of the face and the head. Cranial NCCs are multipotent cells giving rise to bones, cartilage, adipose-tissues in the face, and neural cells, melanocytes, and others. The behavior of cranial NCCs (proliferation, cell death, migration, differentiation, and cell fate specification) are well regulated by several signaling pathways; abnormalities in their behavior are often reported as causative reasons for craniofacial anomalies (CFAs), which occur in 1 in 100 newborns in the United States.
View Article and Find Full Text PDFIn the early stage of bacterial translation, peptidyl-tRNAs frequently dissociate from the ribosome (pep-tRNA drop-off) and are recycled by peptidyl-tRNA hydrolase. Here, we establish a highly sensitive method for profiling of pep-tRNAs using mass spectrometry, and successfully detect a large number of nascent peptides from pep-tRNAs accumulated in Escherichia coli pth strain. Based on molecular mass analysis, we found about 20% of the peptides bear single amino-acid substitutions of the N-terminal sequences of E.
View Article and Find Full Text PDFCraniosynostosis is a congenital anomaly characterized by the premature fusion of cranial sutures. Sutures are a critical connective tissue that regulates bone growth; their aberrant fusion results in abnormal shapes of the head and face. The molecular and cellular mechanisms have been investigated for a long time, but knowledge gaps remain between genetic mutations and mechanisms of pathogenesis for craniosynostosis.
View Article and Find Full Text PDF