Publications by authors named "Mishchuk N"

The main chemical, biological and physical methods of deactivation of such natural disperse systems as soils and bottom sediments from charged and uncharged pollutants are analyzed. The impact of properties of natural disperse systems and the substances causing their contamination on the expediency of using some specific detoxication method is considered. The peculiarities of ex-situ and in-situ treatment are indicated.

View Article and Find Full Text PDF

Experimental data for tridecyl dimethyl phosphine oxide (CDMPO) adsorption layers at the water/air interface, including equilibrium surface tension and surface dilational viscoelasticity, are measured by bubble and drop profile analysis tensiometry at different solution concentrations and surface area oscillation frequencies. The results are used to assess the applicability of a multistate model with more than two possible adsorption states. For the experiments with single drops, the depletion of surfactant molecules due to adsorption at the drop surface is taken into account.

View Article and Find Full Text PDF

Multiple interactions between different pollutants in the surface waters can cause unpredictable consequences. The aim of the study was to evaluate the combined effect of two widespread xenobiotics, titanium oxide nanoparticles (TiO) and bisphenol A (BPA), on freshwater bivalve Unio tumidus. The specimens were exposed for 14 days to TiCl (Ti, 1.

View Article and Find Full Text PDF

Hypertension is the most common disease of the cardiovascular system. Active treatment of hypertension with adequate control of blood pressure (BP) can prevent complications, improve life quality and increase life expectancy. One of the interesting new antihypertensive agents, from the group of angiotensin receptor blockers is olmesartan.

View Article and Find Full Text PDF

A model of collision and collection of Brownian submicron particles based on the creation of a convective-diffusion layer near a bubble surface and overcoming the energy barrier created by particle/bubble interaction is developed. Simple analytical expressions describing the rate of collision and collection efficiency are obtained. The collision and collection minimums and the limits of theory applicability are analysed.

View Article and Find Full Text PDF

The present article focuses on the analysis of experimental data and interpreting of the influence of water depletion near hydrophobic particles and nanobubbles formed on their surface or in the space between them on van der Waals and electrostatic components of interparticle interaction. It is shown that the difference between simplified and more detailed models of DLVO forces explains the nature and main characteristics of hydrophobic attraction.

View Article and Find Full Text PDF

The review addresses the peculiarities of concentration polarization caused by an electric current passing through conducting and around nonconducting charged materials. The conditions of emergence of an induced space charge of large density and thickness behind an electrical double layer, leading to strong non-linearity of electroosmosis and electrophoresis, are analyzed. Basic findings about concentration polarization, its theoretical modeling and experimental investigations, as well as its influence on electrokinetic phenomena and mass transfer through ion-exchange materials are discussed from the point of view of the fundamental knowledge about polarization processes and from the perspective of their practical application.

View Article and Find Full Text PDF

A microfluidic pump based on electroosmosis of the second kind was designed and fabricated. Experimental results using DC and AC voltages showed a close to second-order relationship between flow and voltage, in good agreement with theory. The experimental flow rates were considerably lower than the predicted maximum for the micropumps, which can be attributed to the hydrodynamic resistance of the channel network.

View Article and Find Full Text PDF

The paper presents a kinetic model developed for ozone dissolution in water and taking into account convective and diffusion processes occurring in the vicinity of floating bubbles that contain an ozone-air mixture. It was shown that the gradient of ozone concentration in a convective-diffusion layer and consequently the rate of ozone transfer from bubbles to the solution depended on the rate of ozone decomposition both in its reaction with organic admixtures and in the conditions of exposure to ultraviolet radiation. The obtained kinetic curves of destruction of organic compounds and changes of ozone concentration in water and ozone-air mixture are compared with experimental data for humic acids.

View Article and Find Full Text PDF

An hypothesis regarding the impact of water density near hydrophobic surfaces on the electrostatic component of their interaction was offered. A theoretical model of the electric double layer and the interparticle interaction under conditions of the variable density and, consequently, variable dielectric permittivity of water has been developed. It was shown that reduction of the dielectric permittivity near interfaces determined by their hydrophobicity resulted in compression of double electrical layers and weakening of their overlapping.

View Article and Find Full Text PDF

Both from the experimental and theoretical viewpoints it is of fundamental importance to know precisely which are the fluid flow characteristics in a (cylindrical, say) closed cell under the action of an externally applied electric field, parallel to the cell axis. This is so because in many cases the experimental determination of the electrophoretic mobility of dispersed particles is carried out in closed cells, whereby the motion of the particles in the laboratory reference system is the result of the superposition of their electrophoretic migration plus the liquid motion with respect to the cell. This makes it of utmost importance to analyze the above-mentioned fluid and particle movements.

View Article and Find Full Text PDF

Very small bubbles which partially coat the surface of particles influence whether or not heterocoagulation between a particle and a bubble occurs. The electrostatic and van der Waals forces of interaction between particles and bubbles were calculated as a function of electrolyte concentration, particle size, and the size and distributions of these very small bubbles present on the particle surface. The height of the surface force barrier was compared with the hydrodynamic pressing force under conditions of flotation.

View Article and Find Full Text PDF

A theoretical model of the EOF and hydrodynamic flow in wide closed cylindrical capillaries, after the application of a stepwise voltage, is developed. Analytical expressions have been obtained as a sum of the solutions for the direct flow and backflow in both periodical and aperiodical regimes with arbitrary pulse/pulse or pulse/pause durations and amplitudes. The numerical analysis, performed for a few types of periodical and aperiodical regimes, shows the qualitative peculiarities of the liquid velocity profiles and its displacement for different numbers of pulses.

View Article and Find Full Text PDF

A theoretical model of the EOF established in a wide capillary after the application of a stepwise voltage has been developed. Both periodical and aperiodical flow regimes were studied with arbitrary pulse/pulse or pulse/pause durations and amplitudes. The numerical analysis performed for a few types of periodical regimes showed the peculiarities of the profiles of liquid velocity and its displacement both for the transition to the stationary regime and for the quasi-stationary periodical and aperiodical regimes.

View Article and Find Full Text PDF

The present investigation is based on the description of electrostatic interaction in concentrated disperse systems proposed 45 years ago by Albers and Overbeek. Starting from their model, we developed a stability theory of concentrated Brownian W/O emulsions in which nondeformed droplets undergo electrostatic and Van der Waals interactions. While the droplets in dilute emulsion may be described by pair interaction, in dense emulsions, every droplet is closely surrounded by other droplets, and when two of them come together, not only the energy of their pair interaction, but also their interaction with surrounding droplets change.

View Article and Find Full Text PDF

A theory of concentration polarization of a thin electrical double layer (DL) on a spherical particle is developed for the regime of large Peclet numbers which is realized in strong electric fields. In this regime, the concentration field arising outside DL is estimated under influence of diffusion and convection. According to the theory developed, polarization of DL at large Peclet numbers causes a change in the Stern potential, the formation of a dipole moment and the long-range potential.

View Article and Find Full Text PDF

Single bubble experiments performed with different size fractions of quartz particles and different, but known, contact angles revealed two modes of flotation dynamics in superclean water. (1.) A monotonic increase of collection efficiency Ecoll with increasing particle size was observed at high particle hydrophobicity and, correspondingly, a low wetting film stability (WFS).

View Article and Find Full Text PDF

The processes of attachment and detachment of small or medium-sized particles to relatively large bubbles during microflotation are considered in terms of the heterocoagulation theory. Calculations are made for the conditions that the surface potentials are of similar sign and constant, that one of the surface potentials is small, that hydrophobic attraction is absent, and that there are no surface deformations. Under these conditions bubble-particle aggregates may form as a result of an electrostatic attraction which exceeds the repulsive van der Waals force at intermediate distances.

View Article and Find Full Text PDF

Diastolic transmitral bloodflow (TMBF) was studied in 42 patients with type I diabetes mellitus (DM) and 46 essentially healthy subjects in rest and during wrist isometric load. In rest, the auricle role in the left ventricular (LV) filling got enhanced but indices for early filling did not undergo changes as compared to controls. In exposure to the load, alterations in TMBF patterns in 25 DM patients were different from the reaction in healthy subjects.

View Article and Find Full Text PDF

Diastolic function was studied of left ventricle by pulse Doppler echocardiography in 42 patients with type I diabetes mellitus (DM) and 46 essentially healthy individuals. In DM patients diastolic function was manifested by rise in peak velocity of atrial filling, decrease in ratio of peak velocity of early filling to that of late one, increase in left ventricular end-diastolic pressure. The findings available suggest the atrial phase has an important part in the structure of diastole in DM patients because of a combined influence of tachycardia and increased rigidity of left ventricular myocardium.

View Article and Find Full Text PDF