Purpose: The development of advanced estimators for intravoxel incoherent motion (IVIM) modeling is often motivated by a desire to produce smoother parameter maps than least squares (LSQ). Deep neural networks show promise to this end, yet performance may be conditional on a myriad of choices regarding the learning strategy. In this work, we have explored potential impacts of key training features in unsupervised and supervised learning for IVIM model fitting.
View Article and Find Full Text PDFPurpose: Earlier work showed that IVIM-NET , an unsupervised physics-informed deep neural network, was faster and more accurate than other state-of-the-art intravoxel-incoherent motion (IVIM) fitting approaches to diffusion-weighted imaging (DWI). This study presents a substantially improved version, IVIM-NET , and characterizes its superior performance in pancreatic cancer patients.
Method: In simulations (signal-to-noise ratio [SNR] = 20), the accuracy, independence, and consistency of IVIM-NET were evaluated for combinations of hyperparameters (fit S0, constraints, network architecture, number of hidden layers, dropout, batch normalization, learning rate), by calculating the normalized root-mean-square error (NRMSE), Spearman's ρ, and the coefficient of variation (CV ), respectively.