Glioma cells hijack developmental programs to control cell state. Here, we uncover a glioma cell state-specific metabolic liability that can be therapeutically targeted. To model cell conditions at brain tumor inception, we generated genetically engineered murine gliomas, with deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling astrocyte differentiation during brain development.
View Article and Find Full Text PDFIn brain tumor surgery, maximal tumor resection is typically desired. This is complicated by infiltrative tumor cells which cannot be visually distinguished from healthy brain tissue. Optical methods are an emerging field that can potentially revolutionize brain tumor surgery through intraoperative differentiation between healthy and tumor tissues.
View Article and Find Full Text PDFThe role of systemic therapy in primary or advanced and metastatic chordoma has been traditionally limited because of the inherent resistance to cytotoxic therapies and lack of specific or effective therapeutic targets. Despite resection and adjuvant radiation therapy, local recurrence rates in clival chordoma remain high and the risk of systemic metastases is not trivial, leading to significant morbidity and mortality. Recently, molecular targeted therapies (MTTs) and immune checkpoint inhibitors (ICIs) have emerged as promising therapeutic avenues in chordoma.
View Article and Find Full Text PDF