Publications by authors named "Misgina Tsighe Hagos"

Automated Motion Artefact Detection (MAD) in Magnetic Resonance Imaging (MRI) is a field of study that aims to automatically flag motion artefacts in order to prevent the requirement for a repeat scan. In this paper, we identify and tackle the three current challenges in the field of automated MAD; (1) reliance on fully-supervised training, meaning they require specific examples of Motion Artefacts (MA), (2) inconsistent use of benchmark datasets across different works and use of private datasets for testing and training of newly proposed MAD techniques and (3) a lack of sufficiently large datasets for MRI MAD. To address these challenges, we demonstrate how MAs can be identified by formulating the problem as an unsupervised Anomaly Detection (AD) task.

View Article and Find Full Text PDF