Biocatalysis in ionic liquids enables novel routes for bioprocessing. Enzymes derived from extremophiles promise greater stability and activity under ionic liquid (IL) influence. Here, we probe the enzyme alcohol dehydrogenase 2 from the halophilic archaeon in thirteen different ion combinations for relative activity and analyse the results against molecular dynamics (MD) simulations of the same IL systems.
View Article and Find Full Text PDFDuring the foreign body response (FBR), macrophages fuse to form foreign body giant cells (FBGCs). Modulation of FBGC formation can prevent biomaterial degradation and loss of therapeutic efficacy. However, the microenvironmental cues that dictate FBGC formation are poorly understood with conflicting reports.
View Article and Find Full Text PDFInterpretation of X-ray photoelectron spectroscopy (XPS) spectra of complex material surfaces, such as those obtained after surface plasma treatment of polymers, is confined by the available references. The limited understanding of the chemical surface composition may impact the ability to determine suitable coupling chemistries used for surface decoration or assess surface-related properties like biocompatibility. In this work, XPS is used to investigate the chemical composition of various ultra-high-molecular-weight polyethylene (UHMWPE) surfaces.
View Article and Find Full Text PDFControl over intracellular release of therapeutic compounds incorporated into nano-carriers will open new possibilities for targeted treatments of various diseases including cancer, and viral and bacterial infections. Here we report our study on mechanoresponsive nano-sized liposomes which, following internalization by cells, achieve intracellular delivery of encapsulated cargo on application of external ultrasound stimulus. This is demonstrated in a bespoke cell reporter system designed to assess free drug in cytoplasm.
View Article and Find Full Text PDFIntraperitoneal (IP) drug delivery of chemotherapeutic agents, administered through hyperthermal intraperitoneal chemotherapy (HIPEC) and pressurized intraperitoneal aerosolized chemotherapy (PIPAC), is effective for the treatment of peritoneal malignancies. However, these therapeutic interventions are cumbersome in terms of surgical practice and are often associated with the formation of peritoneal adhesions, due to the catheters inserted into the peritoneal cavity during these procedures. Hence, there is a need for the development of drug delivery systems that can be administered into the peritoneal cavity.
View Article and Find Full Text PDFSkeletal stem cells (SSCs, or mesenchymal stromal cells typically referred to as mesenchymal stem cells from the bone marrow) are a dynamic progenitor population that can enter quiescence, self-renew or differentiate depending on regenerative demand and cues from their niche environment. However, ex vivo, in culture, they are grown typically on hard polystyrene surfaces, and this leads to rapid loss of the SSC phenotype. While materials are being developed that can control SSC growth and differentiation, very few examples of dynamic interfaces that reflect the plastic nature of the stem cells have, to date, been developed.
View Article and Find Full Text PDFControlling supramolecular self-assembly across multiple length scales to prepare gels with localised properties is challenging. Most strategies concentrate on fabricating gels with heterogeneous components, where localised properties are generated by the stimuli-responsive component. Here, as an alternative approach, we use a spiropyran-modified surface that can be patterned with light.
View Article and Find Full Text PDFPolymeric, biodegradable, microspheres (MS) presenting a biomimetic surface of extracellular matrix (ECM) proteins are currently used for transporting cells and/or encapsulated proteins for regenerative medicine studies. They can be made of (lactic-co-glycolic acid) (PLGA) or of a more hydrophilic PLGA-P188 (Poloxamer188)-PLGA polymer allowing for the complete release of the therapeutic proteins. They promote stem cell adhesion, cell survival and differentiation after transplantation.
View Article and Find Full Text PDFProtein-coated polymer-based microparticles are attractive supports for cell delivery, but the interplay between microparticle properties, protein coating, and cell response is poorly understood. The interest in alternative microparticle formulations increases the need for a better understanding of how functional protein coatings form on different microparticles. In this work, microparticle formulations based on biodegradable polymers [poly (lactic-co-glycolic acid) (PLGA) and the triblock copolymer PLGA-poloxamer-PLGA] were prepared via an emulsion-based process.
View Article and Find Full Text PDFThe surface of a medical implant is required to interact favourably with ions, biomolecules and cells , commonly resulting in the formation of the extracellular matrix. Medical grade Ti6Al4V alloy is widely used in orthopaedic and dental applications for bone replacement due to its advantageous mechanical properties and biocompatibility, which enhances the adhesion between native tissue and the implanted material. In this study, chemical and thermal modification of a medical-grade Ti6Al4V alloy were performed to enhance electrostatic interactions at the alloy surface with a synthetic peptide, suitable for conferring drug release capabilities and antimicrobial properties.
View Article and Find Full Text PDFSupramolecular gels have recently emerged as promising biomaterials for the delivery of a wide range of bioactive molecules, from small hydrophobic drugs to large biomolecules such as proteins. Although it has been demonstrated that each encapsulated molecule has a different release profile from the hydrogel, so far diffusion and steric impediment have been identified as the only mechanisms for the release of molecules from supramolecular gels. Erosion of a supramolecular gel has not yet been reported to contribute to the release profiles of encapsulated molecules.
View Article and Find Full Text PDFSurface-mediated self-assembly has potential in biomaterial development but underlying rules governing surface-gelator interactions are poorly understood. Here, we correlate surface properties with structural characterization data of nucleoside-based gels obtained by GISAXS and GIWAXS and find that hydrophobicity descriptors (log P, polar surface area, aromaticity) are key predictors for the gel structures formed.
View Article and Find Full Text PDFLow molecular weight nucleoside gelators hold great promise in drug delivery and particularly for the delivery of biologics because of their excellent biocompatibility. However, the influence of these gelators on protein aggregation inhibition has not yet been studied. Protein aggregation is the most significant cause of protein instability and can severely impact the biological activity of the protein, impairing the quality and safety of the formulation.
View Article and Find Full Text PDFAmong the many parameters that have been explored to exercise control over self-assembly processes, the influence of surface properties on self-assembly has been recognized as important but has received considerably less attention than other factors. This is particularly true for biomolecule-derived self-assembling molecules such as protein, peptide, and nucleobase derivatives. Because of their relevance to biomaterial and drug delivery applications, interest in these materials is increasing.
View Article and Find Full Text PDFAmong the diversity of existing supramolecular hydrogels, nucleic acid-based hydrogels are of particular interest for potential drug delivery and tissue engineering applications because of their inherent biocompatibility. Hydrogel performance is directly related to the nanostructure and the self-assembly mechanism of the material, an aspect that is not well-understood for nucleic acid-based hydrogels in general and has not yet been explored for cytosine-based hydrogels in particular. Herein, we use a broad range of experimental characterization techniques along with molecular dynamics (MD) simulation to demonstrate the complementarity and applicability of both approaches for nucleic acid-based gelators in general and propose the self-assembly mechanism for a novel supramolecular gelator, N-octanoyl-2'-deoxycytidine.
View Article and Find Full Text PDFOut of their niche environment, adult stem cells, such as mesenchymal stem cells (MSCs), spontaneously differentiate. This makes both studying these important regenerative cells and growing large numbers of stem cells for clinical use challenging. Traditional cell culture techniques have fallen short of meeting this challenge, but materials science offers hope.
View Article and Find Full Text PDFSupramolecular materials are widely studied and used for a variety of applications; in most applications, these materials are in contact with surfaces of other materials. Whilst much focus has been placed on elucidating factors that affect supramolecular material properties, the influence of the material surface on gel formation is poorly characterised. Here, we demonstrate that surface properties directly affect the fibre architecture and mechanical properties of self-assembled cytidine based gel films.
View Article and Find Full Text PDFWe report on the use of Raman spectroscopy as a tool to characterise model peptide functionalised surfaces. By taking advantage of Raman reporters built into the peptide sequence, the enzymatic hydrolysis of these peptides could be determined.
View Article and Find Full Text PDFHydrogels have been used extensively in bioengineering as artificial cell culture supports. Investigation of the interrelationship between cellular response to the hydrogel and its chemistry ideally requires methods that allow characterization without labels and can map species in three-dimensional to follow biomolecules adsorbed to, and absorbed into, the open structure before and during culture. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has the potential to be utilized for through thickness characterization of hydrogels.
View Article and Find Full Text PDFMajor design aspects for novel biomaterials are driven by the desire to mimic more varied and complex properties of a natural cellular environment with man-made materials. The development of stimulus responsive materials makes considerable contributions to the effort to incorporate dynamic and reversible elements into a biomaterial. This is particularly challenging for cell-material interactions that occur at an interface (biointerfaces); however, the design of responsive biointerfaces also presents opportunities in a variety of applications in biomedical research and regenerative medicine.
View Article and Find Full Text PDFWe demonstrate the nonaqueous self-assembly of a low-molecular-mass organic gelator based on an electroactive p-type tetrathiafulvalene (TTF)-dipeptide bioconjugate. We show that a TTF moiety appended with diphenylalanine amide derivative (TTF-FF-NH2) self-assembles into one-dimensional nanofibers that further lead to the formation of self-supporting organogels in chloroform and ethyl acetate. Upon doping of the gels with electron acceptors (TCNQ/iodine vapor), stable two-component charge transfer gels are produced in chloroform and ethyl acetate.
View Article and Find Full Text PDFMolecular self-assembly provides a versatile route for the production of nanoscale materials for medical and technological applications. Herein, we demonstrate that the cooperative self-assembly of amphiphilic small molecules and proteins can have drastic effects on supramolecular nanostructuring of resulting materials. We report that mesoscale, fractal-like clusters of proteins form at concentrations that are orders of magnitude lower compared to those usually associated with molecular crowding at room temperature.
View Article and Find Full Text PDFEnzyme responsive materials (ERMs) are a class of stimuli responsive materials with broad application potential in biological settings. This review highlights current and potential future design strategies for ERMs and provides an overview of the present state of the art in the area.
View Article and Find Full Text PDF