Publications by authors named "Mischa Borsdorf"

In their physiological condition, muscles are surrounded by connective tissue, other muscles and bone. These tissues exert transverse forces that change the three-dimensional shape of the muscle compared to its isolated condition, in which all surrounding tissues are removed. A change in shape affects the architecture of a muscle and therefore its mechanical properties.

View Article and Find Full Text PDF

As part of the digestive system, the stomach plays a crucial role in the health and well-being of an organism. It produces acids and performs contractions that initiate the digestive process and begin the break-up of ingested food. Therefore, its mechanical properties are of interest.

View Article and Find Full Text PDF

The function of a muscle is highly dependent on its architecture, which is characterized by the length, pennation, and curvature of the fascicles, and the geometry of the aponeuroses. During in vivo function, muscles regularly undergo changes in length, thereby altering their architecture. During passive muscle lengthening, fascicle length (FL) generally increases and the angle of fascicle pennation (FP) and the fascicle curvature (FC) decrease, while the aponeuroses increase in length but decrease in width.

View Article and Find Full Text PDF

The stomach is a vital organ responsible for food storage, digestion, and transport. Stomach diseases are of great economic and medical importance and require a large number of bariatric surgeries every year. To improve medical interventions, in silico modeling of the gastrointestinal tract has gained popularity in recent years to study stomach functioning.

View Article and Find Full Text PDF

Uniaxial tensile experiments are a standard method to determine the contractile properties of smooth muscles. Smooth muscle strips from organs of the urogenital and gastrointestinal tract contain multiple muscle layers with different muscle fiber orientations, which are frequently not separated for the experiments. During strip activation, these muscle fibers contract in deviant orientations from the force-measuring axis, affecting the biomechanical characteristics of the tissue strips.

View Article and Find Full Text PDF

The stomach is a central organ in the gastrointestinal tract that performs a variety of functions, in which the spatio-temporal organisation of active smooth muscle contraction in the stomach wall (SW) is highly regulated. In the present study, a three-dimensional model of the gastric smooth muscle contraction is presented, including the mechanical contribution of the mucosal and muscular layer of the SW. Layer-specific and direction-dependent model parameters for the active and passive stress-stretch characteristics of the SW were determined experimentally using porcine smooth muscle strips.

View Article and Find Full Text PDF

Siebert, T, Donath, L, Borsdorf, M, and Stutzig, N. Effect of static stretching, dynamic stretching, and myofascial foam rolling on range of motion during hip flexion: A randomized crossover trial. J Strength Cond Res 36(3): 680-685, 2022-Static and dynamic stretching (DS) are commonly used in sports and physical therapy to increase the range of motion (ROM).

View Article and Find Full Text PDF

The urinary bladder is a distensible hollow muscular organ, which allows huge changes in size during absorption, storage and micturition. Pathological alterations of biomechanical properties can lead to bladder dysfunction and loss in quality of life. To understand and treat bladder diseases, the mechanisms of the healthy urinary bladder need to be determined.

View Article and Find Full Text PDF

The stomach serves as food reservoir, mixing organ and absorption area for certain substances, while continually varying its position and size. Large dimensional changes during ingestion and gastric emptying of the stomach are associated with large changes in smooth muscle length. These length changes might induce history-effects, namely force depression (FD) following active muscle shortening and force enhancement (FE) following active muscle stretch.

View Article and Find Full Text PDF