Investigations into the construction of functional molecular crystals and their external stimuli-induced structural transformations represent compelling research topics, particularly for the advancement of sensors and memory devices. However, reports on the development of molecular crystals constructed from discrete mononuclear complex units and exhibiting structural transformations the adsorption/desorption of guest molecules are scarce. In this study, we synthesised three molecular crystals composed of [Al(sap)(acac)(HO)]·(solvent) (Hsap = 2-salicylideneaminophenol, acac = acetylacetonate, solvent = MeCO (Al·Me2CO), MeCN (Al·MeCN), or DMSO (Al·DMSO)), and demonstrated solvent vapour-responsive reversible crystal-to-crystal structural transformations in Al·Me2CO and Al·MeCN.
View Article and Find Full Text PDFThe development of molecule-based multifunctional switchable materials that exhibit a switch of polarity and dielectric property are extremely limited. We have demonstrated solvent-vapour-induced reversible molecular rearrangements between nonpolar crystals [Al(sap)(acac)(sol)] (H sap=2-salicylideneaminophenol, acac=acetylacetonate, sol=MeOH (1), EtOH (2)) and polar crystal [Al(sap)(acac)(DMSO)] (3). This crystal-to-crystal structural transformation was accompanied by a switch of second harmonic generation (SHG) and dielectric properties, including the formation of ferroelectric domains, thus reflecting the SHG-active polar Cc space group of 3.
View Article and Find Full Text PDF