The development and spread of antibiotics and biocides resistance is a significant global challenge. To find a solution for this emerging problem, the discovery of novel bacterial cellular targets and the critical pathways associated with antimicrobial resistance is needed. In the present study, we investigated the role of the two most critical envelope stress response regulators, RpoE and CpxR, on the physiology and susceptibility of growing serovar cells using the polycationic antimicrobial agent, chlorhexidine (CHX).
View Article and Find Full Text PDFAs a facultative intracellular pathogen, Enteritidis must develop an effective oxidative stress response to survive exposure to reactive oxygen species within the host. To study this defense mechanism, we carried out a series of oxidative stress assays in parallel with a comparative transcriptome analyses using a next generation sequencing approach. It was shown that the expression of 45% of the genome was significantly altered upon exposure to HO.
View Article and Find Full Text PDF