Plants activate a myriad of signaling cascades to tailor adaptive responses under environmental stresses, such as salinity. While the roles of exogenous karrikins (KARs) in salt stress mitigation are well comprehended, genetic evidence of KAR signaling during salinity responses in plants remains unresolved. Here, we explore the functions of the possible KAR receptor KARRIKIN-INSENSITIVE2 (KAI2) in Arabidopsis thaliana tolerance to salt stress by investigating comparative responses of wild-type (WT) and kai2-mutant plants under a gradient of NaCl.
View Article and Find Full Text PDFMetalloid contamination, such as arsenic poisoning, poses a significant environmental problem, reducing plant productivity and putting human health at risk. Phytohormones are known to regulate arsenic stress; however, the function of strigolactones (SLs) in arsenic stress tolerance in rice is rarely investigated. Here, we investigated shoot responses of wild-type (WT) and SL-deficient and rice mutants under arsenate stress to elucidate SLs' roles in rice adaptation to arsenic.
View Article and Find Full Text PDFWe explored genetic evidence for strigolactones' role in rice tolerance to arsenate-stress. Comparative analyses of roots of wild-type (WT) and strigolactone-deficient mutants d10 and d17 in response to sodium arsenate (NaAsO) revealed differential growth inhibition [WT (11.28%) vs.
View Article and Find Full Text PDFWater contamination by heavy metals from industrial activities is a serious environmental concern. To mitigate heavy metal toxicity and to recover heavy metals for recycling, biomaterials used in phytoremediation and bio-sorbent filtration have recently drawn renewed attention. The filamentous protonemal cells of the moss Funaria hygrometrica can hyperaccumulate lead (Pb) up to 74% of their dry weight when exposed to solutions containing divalent Pb.
View Article and Find Full Text PDFIn this study, we investigated the bioaccumulation, tissue distribution and physiological responses to different metal concentration (0.2 and 2 mM) and time of exposure of 1, 2 and 3 weeks with cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) using the model liverwort Marchantia polymorpha. Our data showed, on one hand, a significant enrichment and tissue translocation of Cu, Zn, and specially Cd, reaching concentrations of 1800 µg g in 3 weeks.
View Article and Find Full Text PDFThe method introduced here to grow F. hygrometrica in high concentrations of D O is an excellent alternative to produce highly deuterated metabolites with broad applications in metabolic studies. Our mass spectrometry experiments strongly indicate the successful incorporation of deuterium into organic compounds.
View Article and Find Full Text PDFCassava ( Crantz) demand has been rising because of its various applications. High salinity stress is a major environmental factor that interferes with normal plant growth and limits crop productivity. As well as genetic engineering to enhance stress tolerance, the use of small molecules is considered as an alternative methodology to modify plants with desired traits.
View Article and Find Full Text PDFThe copper (Cu) moss Scopelophila cataractae (Mitt.) Broth. is often found in Cu-enriched environments, but it cannot flourish under normal conditions in nature.
View Article and Find Full Text PDFIn meiosis of basal land plants, meiotic division planes are typically predicted by quadri-lobing of the cytoplasm and/or quadri-partitioning of plastids prior to nuclear divisions. However, sporocytes of several marchantialean liverworts display no indication of premeiotic establishment of quadripolarity, as is observed in flowering plants. In these cases, the shape of sporocytes remains spherical or elliptical and numerous plastids are distributed randomly in the cytoplasm during meiosis.
View Article and Find Full Text PDFThe effects of waste ash leachates on soil microorganism were evaluated along with a chemical characterization of ash leachates. Thirty fly ash samples and cyclone ash samples obtained from the incineration of municipal solid waste, plastic waste, and construction waste were used. Twenty-one and 22 samples inhibited N transformation activity of soil microorganism and growth of Bacillus subtilis, respectively.
View Article and Find Full Text PDFGene expression in response to Cu stress in rice leaves was quantified using DNA microarray (Agilent 22K Rice Oligo Microarray) and real-time PCR technology. Rice plants were grown in hydroponic solutions containing 0.3 (control), 10, 45, or 130 microM of CuCl(2), and Cu accumulation and photosynthesis inhibition were observed in leaves within 1 d of the start of treatment.
View Article and Find Full Text PDF