Publications by authors named "Misaki Nagasaka"

The marine red algal genus Laurencia has abundant halogenated secondary metabolites, which exhibit novel structural types and possess various unique biological potentials, including antifouling activity. In this study, we report the isolation, structure elucidation, and antifouling activities of two novel brominated diterpenoids, aplysin-20 aldehyde (1), 13-dehydroxyisoaplysin-20 (2), and its congeners. We screened marine red alga Laurencia venusta Yamada for their antifouling activity against the mussel Mytilus galloprovincialis.

View Article and Find Full Text PDF

A new irieane-type diterpene, 12-hydroxypinnaterpene C (1), and 21 known compounds, angasiol acetate (2), angasiol (3), 11-deacetylpinnaterpene C (4), palisadin A (5), 12-acetoxypalisadin B (6), 12-hydroxypalisadin B (7), aplysistatin (8), luzodiol (9), 5-acetoxy-2-bromo-3-chloro-chamigra-7(14),9-dien-8-one (10), neoirietriol (11), neoirietetraol (12), (3Z)-laurenyne (13), cupalaurenol (14), cupalaurenol acetate (15), (3Z)-venustinene (16), 10-hydroxykahukuene B (17), aplysiol B (18), (3Z)-13-epipinnatifidenyne (19), 3Z,6R,7R,12S,13S-obtusenyne (20), (3Z,9Z)-7-chloro-6-hydroxy-12-oxo-pentadeca-3,9-dien-1-yne (21), and cholest-7-en-3,5,7-triol (22) were isolated from the digestive diverticula of Aplysia argus from the Ikei Island in Okinawa, Japan. The structures of these compounds were determined using spectroscopic methods such as NMR and HR-ESI-MS. These compounds were tested for their antibacterial activity against the phytopathogen Ralstonia solanacearum.

View Article and Find Full Text PDF

One new furanocembranoid diterpene, 11-hydroxy-Δ-pukalide (1), along with six known secondary metabolites, 11-acetoxy-Δ-pukalide (2), 13α-acetoxypukalide (3), pukalide (4), 3α-methoxyfuranocembranoid (5), Δ-africanene (6), and methyl (5'E)-5-(2',6'-dimethylocta-5',7'-dienyl)furan-3-carboxylate (7) were isolated from the Okinawan soft coral Sinularia sp. Their chemical structures were elucidated based on spectroscopic analysis (FTIR, NMR, and HRESIMS), and the relative stereochemistry of 1 was determined by NOESY experiments and acetylation, which yielded derivative 2. In addition, compounds 1 and 7 exhibited toxicity in the brine shrimp lethality test.

View Article and Find Full Text PDF