A survey meter was developed to reliably detect and visualize surface contamination of suits and objects by α-nuclides in high γ/n-rays background radiation environment. The survey meter features a semi-opaque ZnS:Ag scintillator mounted directly onto a multi-anode photomultiplier tube (MA-PMT) and amplification circuits, ensuring output gain equalization for all channels. α-ray events induce localized light emission in thin-film scintillators.
View Article and Find Full Text PDFTo understand the mechanism underlying the high radio-sensitisation of living cells possessing brominated genomic DNA, X-ray photoelectron spectroscopy (XPS) using synchrotron X-rays with energies of 2000 or 2500 eV was used to study brominated and nonbrominated nucleobases, nucleosides and nucleotides. The bromine atom significantly reduced the energy gap between the valence and conduction states, although the core level states were not greatly affected. This finding was supported by quantum chemical calculation for the nucleobases and nucleosides.
View Article and Find Full Text PDFPurpose: To evaluate the foveal avascular zone (FAZ) and retinal structure in familial exudative vitreoretinopathy (FEVR).
Patients And Methods: Eighteen eyes with stage 1 or 2 FEVR and 20 control eyes were evaluated. The central retinal thickness (CRT), foveal inner retinal thickness (IRT), surface retinal vessel density (SRVD), and deep retinal vessel density (DRVD) were measured using optical coherence tomography.
Int J Radiat Biol
January 2023
Purpose: To clarify the radiosensitization mechanism masking the Auger effect of the cells possessing brominated DNA, the electronic properties of DNA-related molecules containing Br were investigated by X-ray spectroscopy and specific heat measurement.
Materials And Methods: X-ray absorption near-edge structure (XANES) and X-ray photoemission spectroscopy (XPS) were used to measure the electronic properties of the nucleotides with and without Br. We determined the specific heat of 5-bromouracil crystals with thymine as a reference molecule at low temperatures of 3-48 K to calculate the microscopic state numbers.