Fluorophore bioconjugation to proteins, nucleic acids, and other important molecules can provide a powerful approach to sensing, imaging, and quantifying chemical and biological processes. One of the most prevalent methods for fluorophore attachment is through the formation of amide bonds, which are often facilitated by coupling agents to activate carboxylic acid moieties for subsequent nucleophilic attack by amines. 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM) is among the most popular of these coupling agents for bioconjugation due to its ability to facilitate amide bond formation in water.
View Article and Find Full Text PDFSmall molecule contaminants pose a significant threat to the environment and human health. While regulations are in place for allowed limits in many countries, detection and remediation of contaminants in more resource-limited settings and everyday environmental sources remains a challenge. Functional nucleic acids, including aptamers and DNA enzymes, have emerged as powerful options for addressing this challenge due to their ability to non-covalently interact with small molecule targets.
View Article and Find Full Text PDFSmall-molecule toxins pose a significant threat to human health and the environment, and their removal is made challenging by their low molecular weight. Aptamers show promise as affinity reagents for binding these toxins, and recently, aptamers have been utilized for both sensing and remediation applications. We found that functionalization of ultrafiltration membranes with aptamers provides a convenient scaffold for toxin sequestration, but our initial efforts in this area were limited by low functionalization efficiencies and the ability to only capture a single target molecule.
View Article and Find Full Text PDF