Machine learning (ML) often provides applicable high-performance models to facilitate decision-makers in various fields. However, this high performance is achieved at the expense of the interpretability of these models, which has been criticized by practitioners and has become a significant hindrance in their application. Therefore, in highly sensitive decisions, black boxes of ML models are not recommended.
View Article and Find Full Text PDFCriticism of the implementation of existing risk prediction models (RPMs) for cardiovascular diseases (CVDs) in new populations motivates researchers to develop regional models. The predominant usage of laboratory features in these RPMs is also causing reproducibility issues in low-middle-income countries (LMICs). Further, conventional logistic regression analysis (LRA) does not consider non-linear associations and interaction terms in developing these RPMs, which might oversimplify the phenomenon.
View Article and Find Full Text PDFBackground: In the broader healthcare domain, the prediction bears more value than an explanation considering the cost of delays in its services. There are various risk prediction models for cardiovascular diseases (CVDs) in the literature for early risk assessment. However, the substantial increase in CVDs-related mortality is challenging global health systems, especially in developing countries.
View Article and Find Full Text PDFModifiable risk factors are associated with cardiovascular mortality (CVM) which is a leading form of global mortality. However, diverse nature of urbanization and its objective measurement can modify their relationship. This study aims to investigate the moderating role of urbanization in the relationship of combined exposure (CE) of modifiable risk factors and CVM.
View Article and Find Full Text PDF