Objective: Hemorrhagic fever with renal syndrome (HFRS), one of the main public health concerns in mainland China, is a group of clinically similar diseases caused by hantaviruses. Statistical approaches have always been leveraged to forecast the future incidence rates of certain infectious diseases to effectively control their prevalence and outbreak potential. Compared to the use of one base model, model stacking can often produce better forecasting results.
View Article and Find Full Text PDFObjectives: Human brucellosis is a public health problem endangering health and property in China. Predicting the trend and the seasonality of human brucellosis is of great significance for its prevention. In this study, a comparison between the autoregressive integrated moving average (ARIMA) model and the eXtreme Gradient Boosting (XGBoost) model was conducted to determine which was more suitable for predicting the occurrence of brucellosis in mainland China.
View Article and Find Full Text PDF