Nowadays, calcium sulfoaluminate cement (CSA) is garnering a large amount of attention worldwide and is being promoted as a sustainable alternative to Portland cement for specific applications. This study aimed to control the heat release of CSA cement paste by choosing the appropriate composition. For this purpose, different calcium sulfoaluminate clinkers with up to 75 wt.
View Article and Find Full Text PDFAdditive manufacturing of Polymer-Derived Ceramics (PDCs) is regarded as a disruptive fabrication process that includes several technologies such as light curing and ink writing. However, 3D printing based on material extrusion is still not fully explored. Here, an indirect 3D printing approach combining Fused Deposition Modeling (FDM) and replica process is demonstrated as a simple and low-cost approach to deliver complex near-net-shaped cellular Si-based non-oxide ceramic architectures while preserving the structure.
View Article and Find Full Text PDFObjectives: A root canal sealer that can increase the resistance of endodontically treated teeth to compressive strength would be of great advantage. The purpose of this study is to use three different nanoparticles: multi-walled carbon nanotubes (MWCNTs), Titanium carbides (TC), and Boron nitrides (BN) into a bioceramic adhesive root canal sealer; BioRoot™ RCS, in an attempt to improve its structural and compressive strength properties.
Methods: Three composites of two weight fractions (1- and 2-wt.
Aim: Bioceramic root canal sealers like BioRoot RCS have received significant attention for use in endodontics. The addition of a nanophase material like multi-walled carbon nanotubes (MWCNTs) and titanium carbide (TC) to its matrix combined with pressureless sintering might have the potential for improved physiochemical, microstructure, and compressive strength properties.
Method: ology: MWCNTs and TC nanomaterials were added at a percentage of 1 wt% to a definite weight of pristine BioRoot RCS.
Aim: Bioceramic-containing root canal sealers are the most recently introduced sealers in endodontics. The present work reported experiments on a bioceramic-based root canal sealer with the objective of improving its physiochemical properties via reinforcement with each one of the three different nanomaterials: multi-walled carbon nanotubes (MWCNTS), titanium carbide (TC) or boron nitride (BN) in two weight percentages (1 wt% and 2 wt%).
Methodology: Each nanomaterial was added to a definite weight of BioRoot root canal sealer (BioRoot™ RCS, Septodont, Saint-Maur-des-Fossés, France).
The intermetallic NdNiMg is the Mg-richest phase (more than 88 atom % of Mg) discovered in the Mg-Nd-Ni system. Its structure was determined by X-ray diffraction on single crystal with the following crystal data: tetragonal system, P4/ nmm, Z = 2, a = 10.0602(1) Å, c = 7.
View Article and Find Full Text PDF