Algal blooms are increasing worldwide, driven by elevated nutrient inputs. However, it is still unknown how tropical benthic algae will respond to heatwaves, which are expected to be more frequent under global warming. In the present study, a multifactorial experiment was carried out to investigate the potential synergistic effects of increased ammonium inputs (25 μM, control at 2.
View Article and Find Full Text PDFThe Mediterranean Sea has been experiencing rapid increases in temperature and salinity triggering its tropicalization. Additionally, its connection with the Red Sea has been favouring the establishment of non-native species. In this study, we investigated the effects of predicted climate change and the introduction of invasive seagrass species (Halophila stipulacea) on the native Mediterranean seagrass community (Posidonia oceanica and Cymodocea nodosa) by applying a novel ecological and spatial model with different configurations and parameter settings based on a Cellular Automata (CA).
View Article and Find Full Text PDFIn the last three decades, quantitative approaches that rely on organism traits instead of taxonomy have advanced different fields of ecological research through establishing the mechanistic links between environmental drivers, functional traits, and ecosystem functions. A research subfield where trait-based approaches have been frequently used but poorly synthesized is the ecology of seagrasses; marine angiosperms that colonized the ocean 100M YA and today make up productive yet threatened coastal ecosystems globally. Here, we compiled a comprehensive trait-based response-effect framework (TBF) which builds on previous concepts and ideas, including the use of traits for the study of community assembly processes, from dispersal and response to abiotic and biotic factors, to ecosystem function and service provision.
View Article and Find Full Text PDFSeagrass meadows provide valuable ecosystem services but are fragile and threatened ecosystems all over the world. This review highlights the current advances in seagrass research from Viet Nam. One goal is to support decision makers in developing science-based conservation strategies.
View Article and Find Full Text PDFUnderstanding species-specific trait responses under future global change scenarios is of importance for conservation efforts and to make informed decisions within management projects. The combined and single effects of seawater acidification and warmer average temperature were investigated by means of the trait responses of Cymodocea serrulata, a tropical seagrass, under experimental conditions. After a 35 d exposure period, biochemical, morphological, and photo-physiological trait responses were measured.
View Article and Find Full Text PDFTropical seagrass meadows are formed by an array of seagrass species that share the same space. Species sharing the same plot are competing for resources, namely light and inorganic nutrients, which results in the capacity of some species to preempt space from others. However, the drivers behind seagrass species competition are not completely understood.
View Article and Find Full Text PDFis a key foundation species in the Mediterranean providing valuable ecosystem services. However, this species is particularly vulnerable towards high coastal nutrient inputs and the rising frequency of intense summer heat waves, but their combined effect has received little attention so far. Here, we investigated the effects of nutrient addition during an unusually warm summer over a 4-month period, comparing different morphological, physiological and biochemical population metrics of seagrass meadows growing in protected areas (Ischia) with meadows already exposed to significant anthropogenic pressure (Baia - Gulf of Pozzuoli).
View Article and Find Full Text PDFDuring the last 150 years, the tropical seagrass species has established itself in the southern and eastern parts of the Mediterranean Sea. More recently (2018), was observed for the first time in the eastern Mediterranean, and was described as the second non-native seagrass species in the Mediterranean Sea. We implemented a species distribution model (SDM) approach to (1) hindcast the habitat suitability of over the last 100 years in the Mediterranean basin, and (2) to model the increase in the potential habitat suitability of and during the current century under two very different climate scenarios, RCP 2.
View Article and Find Full Text PDFSeagrass meadows are declining globally. The decrease of seagrass area is influenced by the simultaneous occurrence of many factors at the local and global scale, including nutrient enrichment and climate change. This study aims to find out how increasing temperature and nutrient enrichment affect the morphological, biochemical and physiological responses of three coexisting tropical species, , and .
View Article and Find Full Text PDFTropical marine seagrasses live in environments with low nutrient concentrations. However, as land development intensifies along tropical coastlines, the marine environment in which these organisms grow is becoming more nutrient-rich. Nitrogen (N) uptake, assimilation, translocation and storage under a diversity of N sources in enriched conditions were investigated in two tropical seagrass species, Cymodocea serrulata and Thalassia hemprichii, from an oligotrophic marine environment.
View Article and Find Full Text PDFCoastal eutrophication is a key driver of shifts in bacterial communities on coral reefs. With fringing and patch reefs at varying distances from the coast the Spermonde Archipelago in southern Sulawesi, Indonesia offers ideal conditions to study the effects of coastal eutrophication along a spatially defined gradient. The present study investigated bacterial community composition of three coral reef habitats: the water column, sediments, and mucus of the hard coral genus , along that cross-shelf environmental and water quality gradient.
View Article and Find Full Text PDFChanges in the coral reef complex can affect predator-prey relationships, resource availability and niche utilisation in the associated fish community, which may be reflected in decreased stability of the functional traits present in a community. This is because particular traits may be favoured by a changing environment, or by habitat degradation. Furthermore, other traits can be selected against because degradation can relax the association between fishes and benthic habitat.
View Article and Find Full Text PDFIncreasing dissolved inorganic carbon (DIC) concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC) concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer that often occurs in coral reefs, no studies on these interactions have been reported. These data are however urgently needed to understand future carbonate production.
View Article and Find Full Text PDFOcean acidification studies in the past decade have greatly improved our knowledge of how calcifying organisms respond to increased surface ocean CO2 levels. It has become evident that, for many organisms, nutrient availability is an important factor that influences their physiological responses and competitive interactions with other species. Therefore, we tested how simulated ocean acidification and eutrophication (nitrate and phosphate enrichment) interact to affect the physiology and ecology of a calcifying chlorophyte macroalga (Halimeda opuntia (L.
View Article and Find Full Text PDFSeaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO2 emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north.
View Article and Find Full Text PDFAtmospheric carbon dioxide emissions cause a decrease in the pH and aragonite saturation state of surface ocean water. As a result, calcifying organisms are expected to suffer under future ocean conditions, but their physiological responses may depend on their nutrient status. Because many coral reefs experience high inorganic nutrient loads or seasonal changes in nutrient availability, reef organisms in localized areas will have to cope with elevated carbon dioxide and changes in inorganic nutrients.
View Article and Find Full Text PDFCouplings between land use and marine food webs in tropical systems are poorly understood. We compared land-sea coupling in seven sites around Puerto Rico, differing in the degree of precipitation and urbanization, by measuring delta(13)C and delta(15)N in producers and consumers. delta(15)N values were influenced by human activity: the food web from sites near urbanized centers was on average 1 per thousand heavier in delta(15)N compared to undeveloped sites.
View Article and Find Full Text PDF