Publications by authors named "Mirta N Giordano"

Dry eye disease (DED) is characterized by a dysfunctional tear film in which the corneal epithelium and its abundant nerves are affected by ocular desiccation and inflammation. Although adaptive immunity and specifically CD4 T cells play a role in DED pathogenesis, the exact contribution of these cells to corneal epithelial and neural damage remains undetermined. To address this, we explored the progression of a surgical DED model in wild-type (WT) and T cell-deficient mice.

View Article and Find Full Text PDF

Corneal nerve impairment contributes significantly to dry eye disease (DED) symptoms and is thought to be secondary to corneal epithelial damage. Transient receptor potential vanilloid-1 (TRPV1) channels abound in corneal nerve fibers and respond to inflammation-derived ligands, which increase in DED. TRPV1 overactivation promotes axonal degeneration in vitro, but whether it participates in DED-associated corneal nerve dysfunction is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • * In this study, a new murine model specifically focusing on THO, without additional desiccating stress, revealed that THO disrupts the ocular surface's neuroimmune balance, activates immune signaling, and leads to increased T-cell activation and memory responses.
  • * The findings indicate that THO is crucial in triggering DED development, even promoting pathogenic T-cell responses when transferred to other mice under mild stress conditions.
View Article and Find Full Text PDF

Immunological interdependence between the two eyes has been reported for the cornea and the retina but not for the ocular mucosal surface. Intriguingly, patients frequently report ocular surface-related symptoms in the other eye after unilateral ocular surgery. Here we show how unilateral eye injuries in mice affect the mucosal immune response of the opposite ocular surface.

View Article and Find Full Text PDF

Tissue injury leads to the release of uric acid (UA). At high local concentrations, UA can form monosodium urate crystals (MSU). MSU and UA stimulate neutrophils to release extracellular traps (NET).

View Article and Find Full Text PDF

The ocular surface is constantly exposed to environmental irritants, allergens and pathogens, against which it can mount a prompt immune response to preserve its integrity. But to avoid unnecessary inflammation, the ocular surface's mucosal immune system must also discriminate between harmless and potentially dangerous antigens, a seemingly complicated task. Despite its unique features, the ocular surface is a mucosal lining, and as such, it shares some homeostatic and pathophysiological mechanisms with other mucosal surfaces.

View Article and Find Full Text PDF

Dry eye is a highly prevalent immune disorder characterized by a dysfunctional tear film and a Th1/Th17 T cell response at the ocular surface. The specificity of these pathogenic effector T cells remains to be determined, but auto-reactivity is considered likely. However, we have previously shown that ocular mucosal tolerance to an exogenous antigen is disrupted in a scopolamine-induced murine dry eye model and that it is actually responsible for disease progression.

View Article and Find Full Text PDF

Purpose: To evaluate the role of nuclear factor-κB (NF-κB) activation in eye drop preservative toxicity and the effect of topical NF-κB inhibitors on preservative-facilitated allergic conjunctivitis.

Methods: Balb/c mice were instilled ovalbumin (OVA) combined with benzalkonium chloride (BAK) and/or NF-κB inhibitors in both eyes. After immunization, T-cell responses and antigen-induced ocular inflammation were evaluated.

View Article and Find Full Text PDF