A series of arylalkanoic acid derivatives bearing methyl(phenethyl)amino groups were prepared and their inhibition of LTB(4) biosynthesis was evaluated. Regression analysis showed the slightly different parabolic dependences of this activity on lipophilicity of alpha-methyl and alpha-unsubstituted alkanoic acid derivatives. The relationship derived for alpha-unsubstituted alkanoic acids was extended by previously prepared group of similar derivatives of arylacetic acids without any change of regression coefficients and statistical criteria.
View Article and Find Full Text PDFA series of arylacetic acid derivatives bearing methyl(arylethyl)amino groups were prepared and their antileukotrienic activities involving LTB(4) were evaluated. Regression analysis has shown a strong dependence of these activities on lipophilicity for both LTB(4) receptor binding and inhibition of LTB(4) biosynthesis; parabolic relationships were derived. The values of slopes of the ascending linear parts of these dependences indicate various types of hydrophobic binding at the site of ligand interaction with relevant biomacromolecules.
View Article and Find Full Text PDF4-(2',4'- Difluorobiphenyl-4-yl)-2-methylbutyric acid (deoxoflobufen, VUFB 19053, CAS 847475-35-8) has been developed as a new omega-biphenyl-alkanoic acid and studied in comparison with the racemic form of 4-(2',4'-difluorobiphenyl-4-yl)-2-methyl-4-oxobutanoic acid (flobufen, CAS 112344-52-2). The compounds were tested in a series of models including acute inflammation induced by carrageenan, adjuvant arthritis, in vitro inhibition of the leuktotriene B4 (LTB4) production, reaction of the graft versus the host (GVHR), production of specific antibodies against ovalbumin, peritoneal exudate formation induced by thioglycollate and phagocytosis of thioglycollate-stimulated mouse peritoneal macrophages. Deoxoflobufen exhibited strong anti-inflammatory, antiarthritic and immunomodulatory effects in most of the performed tests.
View Article and Find Full Text PDFPossible in vitro inhibition of aromatic amino acid decarboxylase (AAD, EC 4.1.1.
View Article and Find Full Text PDF