Publications by authors named "Miroslav Kramar"

We consider a system of granular particles, modeled by two dimensional frictional soft elastic disks, that is exposed to externally applied time-dependent shear stress in a planar Couette geometry. We concentrate on the external forcing that produces intermittent dynamics of stick-slip type. In this regime, the top wall remains almost at rest until the applied stress becomes sufficiently large, and then it slips.

View Article and Find Full Text PDF

History dependence of the evolution of complex systems plays an important role in forecasting. The precision of the predictions declines as the memory of the systems is lost. We propose a simple method for assessing the rate of memory loss that can be applied to experimental data observed in any metric space X.

View Article and Find Full Text PDF

We present a generalization of the induced matching theorem of as reported by Bauer and Lesnick (in: Proceedings of the thirtieth annual symposium computational geometry 2014) and use it to prove a generalization of the algebraic stability theorem for -indexed pointwise finite-dimensional persistence modules. Via numerous examples, we show how the generalized algebraic stability theorem enables the computation of rigorous error bounds in the space of persistence diagrams that go beyond the typical formulation in terms of bottleneck (or log bottleneck) distance.

View Article and Find Full Text PDF

We carry out a direct comparison of experimental and numerical realizations of the exact same granular system as it undergoes shear jamming. We adjust the numerical methods used to optimally represent the experimental settings and outcomes up to microscopic contact force dynamics. Measures presented here range from microscopic through mesoscopic to systemwide characteristics of the system.

View Article and Find Full Text PDF

Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges-for example, due to airline transportation or communication media-allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction.

View Article and Find Full Text PDF

We discuss sets of measures with the goal of describing dynamical properties of force networks in dense particulate systems. The presented approach is based on persistent homology and allows for extracting precise, quantitative measures that describe the evolution of geometric features of the interparticle forces, without necessarily considering the details related to individual contacts between particles. The networks considered emerge from discrete element simulations of two-dimensional particulate systems consisting of compressible frictional circular disks.

View Article and Find Full Text PDF