We present a theoretical and experimental study of two tetracoordinate Co(II)-based complexes with semi-coordination interactions, , non-covalent interactions involving the central atom. We argue that such interactions enhance the thermal and structural stability of the compounds, making them appropriate for deposition on substrates, as demonstrated by their successful deposition on graphene. DC magnetometry and high-frequency electron spin resonance (HF-ESR) experiments revealed an axial magnetic anisotropy and weak intermolecular antiferromagnetic coupling in both compounds, supported by theoretical predictions from complete active space self-consistent field calculations complemented by N-electron valence state second-order perturbation theory (CASSCF-NEVPT2), and broken-symmetry density functional theory (BS-DFT).
View Article and Find Full Text PDFWe report on the experimental investigation of the ultrafast dynamics of valley-polarized excitons in monolayer WSe2 using transient reflection spectroscopy with few-cycle laser pulses with 7 fs duration. We observe that at room temperature, the anisotropic valley population of excitons decays on two different timescales. The shorter decay time of approximately 120 fs is related to the initial hot exciton relaxation related to the fast direct recombination of excitons from the radiative zone, while the slower picosecond dynamics corresponds to valley depolarization induced by Coloumb exchange-driven transitions of excitons between two inequivalent valleys.
View Article and Find Full Text PDFMonolayers of transition metal dichalcogenides display a strong excitonic optical response. Additionally encapsulating the monolayer with hexagonal boron nitride allows to reach the limit of a purely homogeneously broadened exciton system. On such a MoSe -based system, ultrafast six-wave mixing spectroscopy is performed and a novel destructive photon echo effect is found.
View Article and Find Full Text PDFWe investigate the origin of emission lines apparent in the low-temperature photoluminescence spectra of n-doped WS monolayer embedded in hexagonal BN layers using external magnetic fields and first-principles calculations. Apart from the neutral A exciton line, all observed emission lines are related to the negatively charged excitons. Consequently, we identify emissions due to both the bright (singlet and triplet) and dark (spin- and momentum-forbidden) negative trions as well as the phonon replicas of the latter optically inactive complexes.
View Article and Find Full Text PDFStudying the properties of complex molecules on surfaces is still mostly an unexplored research area because the deposition of the metal complexes has many pitfalls. Herein, we probed the possibility to produce surface hybrids by depositing a Co(II)-based complex with chalcone ligands on chemical vapor deposition (CVD)-grown graphene by a wet-chemistry approach and by thermal sublimation under high vacuum Samples were characterized by high-frequency electron spin resonance (HF-ESR), XPS, Raman spectroscopy, atomic force microscopy (AFM), and optical microscopy, supported with density functional theory (DFT) and complete active space self-consistent field (CASSCF)/N-electron valence second-order perturbation theory (NEVPT2) calculations. This compound's rationale is its structure, with several aromatic rings for weak binding and possible favorable - stacking onto graphene.
View Article and Find Full Text PDFThe spectral signatures associated with different negatively charged exciton complexes (trions) in a WS2 monolayer encapsulated in hBN are analyzed from low temperature and polarization resolved reflectance contrast (RC) and photoluminescence (PL) experiments, with an applied magnetic field. Based on results obtained from the RC experiment, we show that the valley Zeeman effect affects the optical response of both the singlet and the triplet trion species through the evolution of their energy and of their relative intensity, when applying an external magnetic field. Our analysis allows us to estimate a free electron concentration of ∼1.
View Article and Find Full Text PDFThe effect of bis(trifluoromethane) sulfonimide (TFSI, superacid) treatment on the optical properties of MoS monolayers is investigated by means of photoluminescence, reflectance contrast and Raman scattering spectroscopy employed in a broad temperature range. It is shown that when applied multiple times, the treatment results in progressive quenching of the trion emission/absorption and in the redshift of the neutral exciton emission/absorption associated with both the A and B excitonic resonances. Based on this evolution, a trion complex related to the B exciton in monolayer MoS is unambiguously identified.
View Article and Find Full Text PDFWe present a comprehensive optical study of thin flakes of tungsten disulfide (WS) with thickness ranging from mono- to octalayer and in the bulk limit. It is shown that the optical band-gap absorption of monolayer WS is governed by competing resonances arising from one neutral and two distinct negatively charged excitons whose contributions to the overall absorption of light vary as a function of temperature and carrier concentration. The photoluminescence response of monolayer WS is found to be largely dominated by disorder/impurity- and/or phonon-assisted recombination processes.
View Article and Find Full Text PDF