Transposable elements (TEs) were initially considered redundant and dubbed 'junk DNA'. However, more recently they were recognized as an essential element of genome plasticity. In nature, they frequently become active upon exposition of the host to stress conditions.
View Article and Find Full Text PDFNanotechnologies have received tremendous attention since their discovery. The current studies show a high application potential of nanoparticles for plant treatments, where the general properties of nanoparticles such as their lower concentrations for an appropriate effects, the gradual release of nanoparticle-based nutrients or their antimicrobial effect are especially useful. The presented review, after the general introduction, analyzes the mechanisms that are described so far in the uptake and movement of nanoparticles in plants.
View Article and Find Full Text PDFEpigenetics has emerged as an important research field for crop improvement under the on-going climatic changes. Heritable epigenetic changes can arise independently of DNA sequence alterations and have been associated with altered gene expression and transmitted phenotypic variation. By modulating plant development and physiological responses to environmental conditions, epigenetic diversity-naturally, genetically, chemically, or environmentally induced-can help optimise crop traits in an era challenged by global climate change.
View Article and Find Full Text PDFAlthough epigenetic modifications have been intensely investigated over the last decade due to their role in crop adaptation to rapid climate change, it is unclear which epigenetic changes are heritable and therefore transmitted to their progeny. The identification of epigenetic marks that are transmitted to the next generations is of primary importance for their use in breeding and for the development of new cultivars with a broad-spectrum of tolerance/resistance to abiotic and biotic stresses. In this review, we discuss general aspects of plant responses to environmental stresses and provide an overview of recent findings on the role of transgenerational epigenetic modifications in crops.
View Article and Find Full Text PDFThe potential use of FZB42 for biological control of various phytopathogens has been documented over the past few years, but its antagonistic interactions with xanthomonads has not been studied in detail. Novel aspects in this study consist of close observation of the death of pv. cells in a co-culture with FZB42, and quantification of lipopeptides and a siderophore, bacillibactin, involved in the killing process.
View Article and Find Full Text PDFEpigenetics is the study of heritable alterations in phenotypes that are not caused by changes in DNA sequence. In the present study, we characterized the genetic and phenotypic alterations of the bacterial plant pathogen pv. () under different treatments with several epigenetic modulating chemicals.
View Article and Find Full Text PDFpv. () is a bacterium that causes black rot of crucifers. The greatest losses of brassica crop production usually result from seed-borne infection, but carry-over of inoculum in field soil may also be possible.
View Article and Find Full Text PDFSeveral Botryosphaeriaceae species are known to occur worldwide, causing dieback, canker and fruit rot on various hosts. Surveys conducted in ten commercial citrus orchards in the northern region of Algeria revealed five species of Botryosphaeriaceae belonging to three genera associated with diseased trees. Morphological and cultural characteristics as well as phylogenetic analyses of the internal transcribed spacer (ITS) region and the translation elongation factor 1-alpha (tef1-α) identified Diplodia mutila, Diplodia seriata, Dothiorella viticola, Lasiodiplodia mediterranea and a novel species which is here described as Lasiodiplodia mithidjana sp.
View Article and Find Full Text PDFspecies are important pathogens, saprobes, and endophytes on grapevines. Several species are known, either as agents of pre- or post-harvest infections, as causal agents of many relevant diseases, including swelling arm, trunk cankers, leaf spots, root and fruit rots, wilts, and cane bleaching. A growing body of evidence exists that a class of small non-coding endogenous RNAs, known as microRNAs (miRNAs), play an important role in post-transcriptional gene regulation, during plant development and responses to biotic and abiotic stresses.
View Article and Find Full Text PDFComprehensive next generation sequencing virus detection was used to detect the whole spectrum of viruses and viroids in selected grapevines from the Czech Republic. The novel NGS approach was based on sequencing libraries of small RNA isolated from grapevine vascular tissues. Eight previously partially-characterized grapevines of diverse varieties were selected and subjected to analysis: Chardonnay, Laurot, Guzal Kara, and rootstock Kober 125AA from the Moravia wine-producing region; plus Müller-Thurgau and Pinot Noir from the Bohemia wine-producing region, both in the Czech Republic.
View Article and Find Full Text PDFThe appearance of somaclonal variability induced by in vitro cultivation is relatively frequent and can, in some cases, provide a valuable source of new genetic variation for crop improvement. The cause of this phenomenon remains unknown; however, there are a number of reports suggesting that epigenetics, including DNA methylations, are an important factor. In addition to the non-heritable DNA methylation changes caused by transient and reversible stress-responsive gene regulation, recent evidence supports the existence of mitotically and meiotically inherited changes.
View Article and Find Full Text PDFThere is relatively little information concerning long-term alterations in DNA methylation following exposure of plants to environmental stress. As little is known about the ratio of non-heritable changes in DNA methylation and mitotically-inherited methylation changes, dynamics and reversibility of the DNA methylation states were investigated in grapevine plants (Vitis vinifera) stressed by in vitro cultivation. It was observed that significant part of induced epigenetic changes could be repeatedly established by exposure to particular planting and stress conditions.
View Article and Find Full Text PDFThe Amplification Fragment Length Polymorphism (AFLP) technique was employed to study genetic variations which can be induced in vines by the stress occurring during different aspects of viticulture (in vitro cultivation, in vitro thermotherapy and virus infection). Analysis of AFLP banding patterns, generated by using 15 primer combinations, pointed to negligible genetic variation among plants exposed to individual stress. The average of similarity coefficients between differently stressed plants of the cultivars Müller Thurgau and Riesling were 0.
View Article and Find Full Text PDF