Background And Purpose: This study aimed to investigate the radiochemical oxygen depletion (ROD) in vivo by directly measuring oxygen levels in various mouse tissues during ultra-high dose rate (UHDR) irradiation at clinically relevant doses and dose rates.
Materials And Methods: Mice bearing subcutaneous human glioblastoma (U-87 MG) tumors were used for tumor and normal tissue (skin, muscle, brain) measurements. An oxygen-sensitive phosphorescent probe (Oxyphor PtG4) was injected into the tissues, and oxygen levels were monitored using a fiberoptic phosphorometer during UHDR irradiation with a 6 MeV electron linear accelerator (LINAC).
Int J Radiat Oncol Biol Phys
March 2024
Purpose: The goal of our study was to characterize the dynamics of intracellular oxygen during application of radiation at conventional (CONV) and FLASH dose rates and obtain evidence for or against the oxygen depletion hypothesis as a mechanism of the FLASH effect.
Methods And Materials: The measurements were performed by the phosphorescence quenching method using probe Oxyphor PtG4, which was delivered into the cellular cytosol by electroporation.
Results: Intracellular radiochemical oxygen depletion (ROD) g-value for a dose rate of 100 Gy/s in the normoxic range was found to be 0.
Significance: Cerebral metabolic rate of oxygen ( ) consumption is a key physiological variable that characterizes brain metabolism in a steady state and during functional activation.
Aim: We aim to develop a minimally invasive optical technique for real-time measurement of concurrently with cerebral blood flow (CBF).
Approach: We used a pair of macromolecular phosphorescent probes with nonoverlapping optical spectra, which were localized in the intra- and extravascular compartments of the brain tissue, thus providing a readout of oxygen gradients between these two compartments.
Dipyrrins are a versatile class of organic ligands capable of fluorogenic complexation of metal ions. The primary goal of our study was to evaluate dipyrrins functionalized with ester and amide groups in 2,2'-positions in sensing applications. While developing the synthesis, we found that 3,3',4,4'-tetraalkyldipyrrins 2,2'-diesters as well as 2,2'-diamides can undergo facile addition of water at the -bridge, transforming into colorless -hydroxydipyrromethanes.
View Article and Find Full Text PDFFLASH is a high-dose-rate form of radiation therapy that has the reported ability, compared with conventional dose rates, to spare normal tissues while being equipotent in tumor control, thereby increasing the therapeutic ratio. The mechanism underlying this normal tissue sparing effect is currently unknown, however one possibility is radiochemical oxygen depletion (ROD) during dose delivery in tissue at FLASH dose rates. In order to investigate this possibility, we used the phosphorescence quenching method to measure oxygen partial pressure before, during and after proton radiation delivery in model solutions and in normal muscle and sarcoma tumors in mice, at both conventional (Conv) (∼0.
View Article and Find Full Text PDFwas launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, ' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.
View Article and Find Full Text PDFPurpose: Radiation therapy delivered at ultrafast dose rates, known as FLASH RT, has been shown to provide a therapeutic advantage compared with conventional radiation therapy by selectively protecting normal tissues. Radiochemical depletion of oxygen has been proposed to underpin the FLASH effect; however, experimental validation of this hypothesis has been lacking, in part owing to the inability to measure oxygenation at rates compatible with FLASH.
Methods And Materials: We present a new variant of the phosphorescence quenching method for tracking oxygen dynamics with rates reaching up to ∼3.
While extensive research has demonstrated an interdependent role of osteogenesis and angiogenesis in bone tissue engineering, little is known about how functional blood vessel networks are organized to initiate and facilitate bone tissue regeneration. Building upon the success of a biomimetic composite nanofibrous construct capable of supporting donor progenitor cell-dependent regeneration, we examined the angiogenic response and spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of cranial bone defect repair utilizing high resolution multiphoton laser scanning microscopy (MPLSM) in conjunction with intravital imaging. We demonstrate here that the regenerative vasculature can be specified as arterial and venous capillary vessels based upon endothelial surface markers of CD31 and Endomucin (EMCN), with CD31EMCN vessels exhibiting higher flowrate and higher oxygen tension (pO) than CD31EMCN vessels.
View Article and Find Full Text PDFAlkene 1,2-dicarbofunctionalizations are highly sought-after transformations as they enable a rapid increase of molecular complexity in one synthetic step. Traditionally, these conjunctive couplings proceed through the intermediacy of alkylmetal species susceptible to deleterious pathways including β-hydride elimination and protodemetalation. Herein, an intermolecular 1,2-dicarbofunctionalization using alkyl -(acyloxy)phthalimide redox-active esters as radical progenitors and organotrifluoroborates as carbon-centered nucleophiles is reported.
View Article and Find Full Text PDFAbnormally low level of interstitial oxygen, or hypoxia, is a hallmark of tumor microenvironment and a known promoter of cancer chemoresistance. Inside a solid tumor mass, the hypoxia stems largely from inadequate supply of oxygenated blood through sparse or misshapen tumor vasculature whilst oxygen utilization rates are low in typical tumor's glycolytic metabolism. In acute leukemias, however, markers of intracellular hypoxia such as increased pimonidazole adduct staining and HIF-1α stabilization are observed in advanced leukemic bone marrows (BM) despite an increase in BM vasculogenesis.
View Article and Find Full Text PDFFluence rate is an effector of photodynamic therapy (PDT) outcome. Lower light fluence rates can conserve tumor perfusion during some illumination protocols for PDT, but then treatment times are proportionally longer to deliver equivalent fluence. Likewise, higher fluence rates can shorten treatment time but may compromise treatment efficacy by inducing blood flow stasis during illumination.
View Article and Find Full Text PDFPurpose: We recently developed a new fluorescence-based technique called "diffuse in vivo flow cytometry" (DiFC) for enumerating rare circulating tumor cells (CTCs) directly in the bloodstream. Non-specific tissue autofluorescence is a persistent problem, as it creates a background which may obscure signals from weakly-labeled CTCs. Here we investigated the use of upconverting nanoparticles (UCNPs) as a contrast agent for DiFC, which in principle could significantly reduce the autofluorescence background and allow more sensitive detection of rare CTCs.
View Article and Find Full Text PDFLanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on in vivo high-resolution microscopy - an application for which the opportunity to carry out excitation at low photon fluxes in non-linear regime makes UCNPs stand out among all multiphoton probes. To create biocompatible nanoparticles we employed Janus-type dendrimers as surface ligands, featuring multiple carboxylates on one 'face' of the molecule, polyethylene glycol (PEG) residues on another and Eriochrome Cyanine R dye as the core.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2019
Tissue oxygenation is one of the key determining factors in bone repair and bone tissue engineering. Adequate tissue oxygenation is essential for survival and differentiation of the bone-forming cells and ultimately the success of bone tissue regeneration. Two-photon phosphorescence lifetime microscopy (2PLM) has been successfully applied in the past to image oxygen distributions in tissue with high spatial resolution.
View Article and Find Full Text PDFBackground: Low availability of oxygen in tumors contributes to the hostility of the tumor microenvironment toward the immune system. However, the dynamic relationship between local oxygen levels and the immune surveillance of tumors by tumor infiltrating T-lymphocytes (TIL) remains unclear. This situation reflects a methodological difficulty in visualizing oxygen gradients in living tissue in a manner that is suitable for spatiotemporal quantification and contextual correlation with individual cell dynamics tracked by typical fluorescence reporter systems.
View Article and Find Full Text PDFCerebrovascular dysfunction has an important role in the pathogenesis of multiple brain disorders. Measurement of hemodynamic responses in vivo can be challenging, particularly as techniques are often not described in sufficient detail and vary between laboratories. We present a set of standardized in vivo protocols that describe high-resolution two-photon microscopy and intrinsic optical signal (IOS) imaging to evaluate capillary and arteriolar responses to a stimulus, regional hemodynamic responses, and oxygen delivery to the brain.
View Article and Find Full Text PDFDirect access to complex, enantiopure benzylamine architectures using a synergistic iridium photoredox/nickel cross-coupling dual catalysis strategy has been developed. New C(sp(3))-C(sp(2)) bonds are forged starting from abundant and inexpensive natural amino acids.
View Article and Find Full Text PDFAn effective protocol toward the O-arylation of β-hydroxy-α-amino acid substrates serine and threonine has been developed via Chan-Lam cross-coupling. This Cu(II)-catalyzed transformation involves benign open-flask conditions that are well-tolerated with a variety of protected (Boc-, Cbz-, Tr-, and Fmoc-) serine and threonine derivatives and various potassium organotrifluoroborates and boronic acids.
View Article and Find Full Text PDFA mild, practical protocol has been developed for the Suzuki cross-coupling of unprotected thienylsulfonamides from air- and bench-stable organotrifluoroborates in the absence of a protecting group on the sulfonamide nitrogen. The developed synthetic method can be applied to the preparation of various arylated and heteroarylated thienylsulfonamides under conditions that are tolerant of a broad range of functional groups.
View Article and Find Full Text PDFThe first total synthesis of Rolloamide B, a cyclic proline-enriched heptapeptide, is reported. This work features solution phase benzotriazole-mediated peptide synthesis ligating native amino acids.
View Article and Find Full Text PDFChemical ligation via O- to N-acyl transfer of O-acylated serine containing peptides affords serine containing native peptides via 8- and 11-membered cyclic transition states opening the door to a wide variety of potential applications to peptide elaboration. The feasibility of these traceless chemical ligations is feasible as supported by computation.
View Article and Find Full Text PDFWe report the alkoxylation of methyl-substituted quinoxalino[2,3-c]cinnolines to give acetals and orthoesters in high yields. Routes to the precursors of this alkoxylation reaction as well as other quinoxalino[2,3-c]cinnoline and their 5-oxide derivatives are reported. Most of these quinoxalino[2,3-c]cinnolines were prepared by cyclization of the corresponding 2-amino-3-(2-nitrophenyl)quinoxaline, which, in turn, result from an unusual Beirut reaction from benzofurazan oxides plus 2-nitrobenzylcyanides.
View Article and Find Full Text PDFBenzotriazol-1-yl-sulfonyl azide, a new crystalline, stable, and easily available diazotransfer reagent provides N-(α-azidoacyl)benzotriazoles convenient for N-, O-, C- and S-acylations. The efficient syntheses of various amides, azido protected peptides, esters, ketones and thioesters is reported together with a wide range of azides (including α-azido acids from α- amino acids in partially aqueous conditions) and diazo compounds.
View Article and Find Full Text PDF