Malignant hyperthermia is a potentially fatal hypermetabolic disorder triggered by halogenated anesthetics and the myorelaxant succinylcholine in genetically predisposed individuals. About 50% of susceptible individuals carry dominant, gain-of-function mutations in RYR1 [which encodes ryanodine receptor type 1 (RyR1)], though they have normal muscle function and no overt clinical symptoms. RyR1 is predominantly found in skeletal muscle but also at lower amounts in immune and smooth muscle cells, suggesting that RYR1 mutations may have a wider range of effects than previously suspected.
View Article and Find Full Text PDFHyperfunction of the mTORC1 pathway has been associated with idiopathic and syndromic forms of autism spectrum disorder (ASD), including tuberous sclerosis, caused by loss of either TSC1 or TSC2. It remains largely unknown how developmental processes and biochemical signaling affected by mTORC1 dysregulation contribute to human neuronal dysfunction. Here, we have characterized multiple stages of neurogenesis and synapse formation in human neurons derived from TSC2-deleted pluripotent stem cells.
View Article and Find Full Text PDFMutations in RYR1, the gene encoding ryanodine receptor 1, are linked to a variety of neuromuscular disorders including malignant hyperthermia (MH), a pharmacogenetic hypermetabolic disease caused by dysregulation of Ca(2+) in skeletal muscle. RYR1 encodes a Ca(2+) channel that is predominantly expressed in skeletal muscle sarcoplasmic reticulum, where it is involved in releasing the Ca(2+) necessary for muscle contraction. Other tissues, however, including cells of the immune system, have been shown to express ryanodine receptor 1; in dendritic cells its activation leads to increased surface expression of major histocompatibility complex II molecules and provides synergistic signals leading to cell maturation.
View Article and Find Full Text PDFMuscle strength declines with age in part due to a decline of Ca(2+) release from sarcoplasmic reticulum calcium stores. Skeletal muscle dihydropyridine receptors (Ca(v)1.1) initiate muscle contraction by activating ryanodine receptors in the sarcoplasmic reticulum.
View Article and Find Full Text PDFIn the present study we provide evidence that SRP-35, a protein we identified in rabbit skeletal muscle sarcoplasmic reticulum, is an all-trans-retinol dehydrogenase. Analysis of the primary structure and tryptic digestion revealed that its N-terminus encompasses a short hydrophobic sequence bound to the sarcoplasmic reticulum membrane, whereas its C-terminal catalytic domain faces the myoplasm. SRP-35 is also expressed in liver and adipocytes, where it appears in the post-microsomal supernatant; however, in skeletal muscle, SRP-35 is enriched in the longitudinal sarcoplasmic reticulum.
View Article and Find Full Text PDFProlonged depolarization of skeletal muscle cells induces entry of extracellular calcium into muscle cells, an event referred to as excitation-coupled calcium entry. Skeletal muscle excitation-coupled calcium entry relies on the interaction between the 1,4-dihydropyridine receptor on the sarcolemma and the ryanodine receptor on the sarcoplasmic reticulum membrane. In this study, we directly measured excitation-coupled calcium entry by total internal reflection fluorescence microscopy in human skeletal muscle myotubes harbouring mutations in the RYR1 gene linked to malignant hyperthermia (MH) and central core disease (CCD).
View Article and Find Full Text PDFJunctate is a 33 kDa integral protein of sarco(endo)plasmic reticulum membranes that forms a macromolecular complex with inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] receptors and TRPC3 channels. TIRF microscopy shows that junctate enhances the number of fluorescent puncta on the plasma membrane. The size and distribution of these puncta are not affected by the addition of agonists that mobilize Ca(2+) from Ins(1,4,5)P(3)-sensitive stores.
View Article and Find Full Text PDFArthritis Rheum
December 2010
Objective: To document the specificity and the mechanism of induction of a novel class II major histocompatibility complex (MHC) antigen by mitogenic growth factors in human mesenchymal stem cells (MSCs) expanded in vitro for translational applications.
Methods: Expression of class II MHC molecules was measured in human MSCs and differentiated cells expanded in the presence of fibroblast growth factor 2 (FGF-2), platelet-derived growth factor BB (PDGF-BB), human platelet lysate, or interferon-γ (IFNγ). The roles of cell proliferation and growth factor-induced signaling pathways were investigated as well as the class II MHC assembly machinery and functional capacity.
Spontaneous Ca(2+) oscillations have been observed in a number of excitable and non-excitable cells, but in most cases their biological role remains elusive. In the present study we demonstrate that spontaneous Ca(2+) oscillations occur in immature human monocyte-derived dendritic cells but not in dendritic cells stimulated to undergo maturation with lipopolysaccharide or other toll like-receptor agonists. We investigated the mechanism and role of spontaneous Ca(2+) oscillations in immature dendritic cells and found that they are mediated by the inositol 1,4,5-trisphosphate receptor as they were blocked by pretreatment of cells with the inositol 1,4,5-trisphosphate receptor antagonist Xestospongin C and 2-aminoethoxydiphenylborate.
View Article and Find Full Text PDFBackground: A diagnosis of malignant hyperthermia susceptibility by in vitro contraction testing can often only be performed at specialized laboratories far away from where patients live. Therefore, we have designed a protocol for genetic screening of the RYR1-cDNA and for functional testing of newly identified ryanodine receptor 1 (RYR1) gene variants in B lymphocytes isolated from peripheral blood samples drawn at local primary care centers.
Methods: B lymphocytes were isolated for the extraction of RYR1-mRNA and genomic DNA and for establishment of lymphoblastoid B cell lines in 5 patients carrying yet unclassified mutations in the RYR1.
In striated muscle, activation of contraction is initiated by membrane depolarisation caused by an action potential, which triggers the release of Ca(2+) stored in the sarcoplasmic reticulum by a process called excitation-contraction coupling. Excitation-contraction coupling occurs via a highly sophisticated supramolecular signalling complex at the junction between the sarcoplasmic reticulum and the transverse tubules. It is generally accepted that the core components of the excitation-contraction coupling machinery are the dihydropyridine receptors, ryanodine receptors and calsequestrin, which serve as voltage sensor, Ca(2+) release channel, and Ca(2+) storage protein, respectively.
View Article and Find Full Text PDFMalignant hyperthermia (MH) is an autosomal dominant disorder characterized by abnormal calcium homeostasis in skeletal muscle in response to triggering agents. Today, genetic investigations on ryanodine receptor type 1 (RYR1) gene and alpha1 subunit of the dihydropyridine receptor (DHPR) (CACNA1S) gene have improved the procedures associated with MH diagnosis. In approximately 50% of MH cases a causative RYR1 mutation was found.
View Article and Find Full Text PDFRyanodine receptors plays a crucial role in skeletal muscle excitation-contraction coupling by releasing calcium ions required for muscle contraction from the sarcoplasmic reticulum. At least three phenotypes associated with more than 100 RYR1 mutations have been identified; in order to elucidate possible pathophysiological mechanisms of RYR1 mutations linked to neuromuscular disorders, it is essential to define the mutation class by studying the functional properties of channels harbouring clinically relevant amino acid substitutions. In the present report we investigated the functional effects of the c.
View Article and Find Full Text PDFDendritic cells express the skeletal muscle ryanodine receptor (RyR1), yet little is known concerning its physiological role and activation mechanism. Here we show that dendritic cells also express the Ca(v)1.2 subunit of the L-type Ca(2+) channel and that release of intracellular Ca(2+) via RyR1 depends on the presence of extracellular Ca(2+) and is sensitive to ryanodine and nifedipine.
View Article and Find Full Text PDFIncreases in intracellular Ca2+ concentration accompany many physiological events, including maturation of dendritic cells, professional antigen-presenting cells characterized by their ability to migrate to secondary lymphoid organs where they initiate primary immune responses. The mechanism and molecules involved in the early steps of Ca2+ release in dendritic cells have not yet been defined. Here we show that the concomitant activation of ryanodine receptor-induced Ca2+ release together with the activation of Toll-like receptors by suboptimal concentrations of microbial stimuli provide synergistic signals, resulting in dendritic cell maturation and stimulation of T cell functions.
View Article and Find Full Text PDF