Publications by authors named "Mirko Piersanti"

Earth's atmosphere, whose ionization stability plays a fundamental role for the evolution and endurance of life, is exposed to the effect of cosmic explosions producing high energy Gamma-ray-bursts. Being able to abruptly increase the atmospheric ionization, they might deplete stratospheric ozone on a global scale. During the last decades, an average of more than one Gamma-ray-burst per day were recorded.

View Article and Find Full Text PDF

The upper portions of the Earth's atmospheric layer, e.g., the ionospheric plasma layer, can be significantly affected by perturbations generated in the lower layers.

View Article and Find Full Text PDF

Significant evidence of ionosphere disturbance in connection to intense seismic events have been detected since two decades. It is generally believed that the energy transfer can be due to Acoustic Gravity Waves (AGW) excited at ground level by the earthquakes. In spite of the statistical evidence of the detected perturbations, the coupling between lithosphere and atmosphere has not been so far properly explained by an accurate enough model.

View Article and Find Full Text PDF

This paper presents how the magnetosphere-plasmasphere-ionosphere system was affected as a whole during the geomagnetic storm peaking on 27 May 2017. The interplanetary conditions, the magnetospheric response in terms of the magnetopause motion, and the ionospheric current flow pattern were investigated using data, respectively, from the WIND spacecraft, from GOES15, GOES13, THEMIS E, THEMIS D and THEMIS A satellites and from the INTERMAGNET magnetometer array. The main objective of the work is to investigate the plasmaspheric dynamics under disturbed conditions and its possible relation to the ionospheric one; to reach this goal, the equatorial plasma mass densities derived from geomagnetic field line resonance observations at the European quasi-Meridional Magnetometer Array (EMMA) and total electron content values obtained through three GPS receivers close to EMMA were jointly considered.

View Article and Find Full Text PDF