Publications by authors named "Mirko Papritz"

Exposure of the respiratory tract to airborne particles (including metal-dusts and nano-particles) is considered as a serious health hazard. For a wide range of substances basic knowledge about the toxic properties and the underlying pathomechanisms is lacking or even completely missing. Legislation demands the toxicological characterization of all chemicals placed on the market until 2018 (REACH).

View Article and Find Full Text PDF

Cadmium (Cd(2+)) is a widespread environmental pollutant, which is associated with a wide variety of cytotoxic and metabolic effects. Recent studies showed that intoxication with the heavy metal most importantly targets the integrity of the epithelial barrier. In our study, the lung epithelial cell line, NCI H441, was cultured with the endothelial cell line, ISO-HAS-1, as a bilayer on a 24-well HTS-Transwell filter plate.

View Article and Find Full Text PDF

Sulphur and nitrogen mustard are strong alkylating agents which can cause after inhalation acute lung injury in the larynx, trachea and large bronchi and can lead to alveolar edema. In our study we tested the N-Lost l-Phenylalanine Mustard (l-Pam). Therefore we seeded the alveolar type II cell line NCI H441 on the upper membrane of a Transwell filter plate and the endothelial cell line ISO-Has-1 on the lower side of the membrane for the alveolar model and combined the human bronchial explant-outgrowth cells and fibroblasts in the bronchial model and exposed both models with various concentrations of l-Pam.

View Article and Find Full Text PDF

Sulfur mustard (SM) is a strong alkylating agent. Inhalation of SM causes acute lung injury accompanied by severe disruption of the airway barrier. In our study, we tested the acute effects after mustard exposure in an in vitro coculture bronchial model of the proximal barrier.

View Article and Find Full Text PDF

In this study, microarray analysis was used to identify tumour-related genes that were down regulated in lung carcinoma. The promoter sequences of the identified genes were analysed for methylation patterns. In lung cancer cell lines, CpG island methylation was frequently detected for TIMP4 (64%), SOX18 (73%), EGF-like domain 7 (56%), CD105 (71%), SEMA2 (55%), RASSF1A (71%), p16 (56%) SLIT2 (100%) and TIMP3 (29%).

View Article and Find Full Text PDF