IEEE Trans Biomed Eng
March 2018
Objective: Contemporary and future outpatient long-term artificial pancreas (AP) studies need to cope with the well-known large intra- and interday glucose variability occurring in type 1 diabetic (T1D) subjects. Here, we propose an adaptive model predictive control (MPC) strategy to account for it and test it in silico.
Methods: A run-to-run (R2R) approach adapts the subcutaneous basal insulin delivery during the night and the carbohydrate-to-insulin ratio (CR) during the day, based on some performance indices calculated from subcutaneous continuous glucose sensor data.
Background And Objective: The inter-subject variability characterizing the patients affected by type 1 diabetes mellitus makes automatic blood glucose control very challenging. Different patients have different insulin responses, and a control law based on a non-individualized model could be ineffective. The definition of an individualized control law in the context of artificial pancreas is currently an open research topic.
View Article and Find Full Text PDFJ Diabetes Sci Technol
November 2013
Background: The objective of this research is to develop a new artificial pancreas that takes into account the experience accumulated during more than 5000 h of closed-loop control in several clinical research centers. The main objective is to reduce the mean glucose value without exacerbating hypo phenomena. Controller design and in silico testing were performed on a new virtual population of the University of Virginia/Padova simulator.
View Article and Find Full Text PDF