Publications by authors named "Mirko Kovac"

Aerial robots can perch onto structures at heights to reduce energy use or to remain firmly in place when interacting with their surroundings. Like how birds have wings to fly and legs to perch, these bio-inspired aerial robots use independent perching modules. However, modular design not only increases the weight of the robot but also its size, reducing the areas that the robot can access.

View Article and Find Full Text PDF

Collecting temporal and spatial high-resolution environmental data can guide studies in environmental sciences to gain insights in ecological processes. The utilization of automated robotic systems to collect these types of data can maximize accuracy, resilience, and deployment rate. Furthermore, it reduces the risk to researchers deploying sensors in inaccessible environments and can significantly increase the cost-effectiveness of such studies.

View Article and Find Full Text PDF

Additive manufacturing methods using static and mobile robots are being developed for both on-site construction and off-site prefabrication. Here we introduce a method of additive manufacturing, referred to as aerial additive manufacturing (Aerial-AM), that utilizes a team of aerial robots inspired by natural builders such as wasps who use collective building methods. We present a scalable multi-robot three-dimensional (3D) printing and path-planning framework that enables robot tasks and population size to be adapted to variations in print geometry throughout a building mission.

View Article and Find Full Text PDF

Here we show the effect of the ionic liquid nature, its content and monomer/crosslinker ratio on the copolymerization of N-vinylpyrrolidone (NVP) with triethylene glycol dimethacrylate (TEGDMA) induced by UV or heat irradiation. For the first time, kinetics curves of photopolymerization NVP with TEGDMA in the presence of ionic liquids are obtained. The ionic liquids EmimBF, BmimBF, OmimBF and EmimTFSI with different cation and anion structures and lengths of the alkyl radical were varied in photopolymer compositions.

View Article and Find Full Text PDF

Many real-world applications for robots-such as long-term aerial and underwater observation, cross-medium operations, and marine life surveys-require robots with the ability to move between the air-water boundary. Here, we describe an aerial-aquatic hitchhiking robot that is self-contained for flying, swimming, and attaching to surfaces in both air and water and that can seamlessly move between the two. We describe this robot's redundant, hydrostatically enhanced hitchhiking device, inspired by the morphology of a remora () disc, which works in both air and water.

View Article and Find Full Text PDF

Due to the difficulty of manipulating muscle activation in live, freely swimming fish, a thorough examination of the body kinematics, propulsive performance, and muscle activity patterns in fish during undulatory swimming motion has not been conducted. We propose to use soft robotic model animals as experimental platforms to address biomechanics questions and acquire understanding into subcarangiform fish swimming behavior. We extend previous research on a bio-inspired soft robotic fish equipped with two pneumatic actuators and soft strain sensors to investigate swimming performance in undulation frequencies between 0.

View Article and Find Full Text PDF

We propose the use of bio-inspired robotics equipped with soft sensor technologies to gain a better understanding of the mechanics and control of animal movement. Soft robotic systems can be used to generate new hypotheses and uncover fundamental principles underlying animal locomotion and sensory capabilities, which could subsequently be validated using living organisms. Physical models increasingly include lateral body movements, notably back and tail bending, which are necessary for horizontal plane undulation in model systems ranging from fish to amphibians and reptiles.

View Article and Find Full Text PDF

The increasing need for safe, inexpensive, and sustainable construction, combined with novel technological enablers, has made large-scale construction by robot teams an active research area. Collective robotic construction (CRC) specifically concerns embodied, autonomous, multirobot systems that modify a shared environment according to high-level user-specified goals. CRC tightly integrates architectural design, the construction process, mechanisms, and control to achieve scalability and adaptability.

View Article and Find Full Text PDF
Article Synopsis
  • Aerial robots are increasingly used in complex urban and natural settings, but face limitations due to environmental obstacles like wires and windows.
  • Current obstacle detection and impact protection systems are either ineffective or too heavy, hindering the robots' flight capabilities.
  • The newly developed Rotary Origami Protective System (Rotorigami) uses a spinning protector and an origami cushion to reduce impact forces, enhancing the resilience of flying robots in confined spaces.
View Article and Find Full Text PDF

This paper presents a robotic anchoring module, a sensorized mechanism for attachment to the environment that can be integrated into robots to enable or enhance various functions such as robot mobility, remaining on location or its ability to manipulate objects. The body of the anchoring module consists of two portions with a mechanical stiffness transition from hard to soft. The hard portion is capable of containing vacuum pressure used for actuation while the soft portion is highly conformable to create a seal to contact surfaces.

View Article and Find Full Text PDF

From millimeter-scale insects to meter-scale vertebrates, several animal species exhibit multimodal locomotive capabilities in aerial and aquatic environments. To develop robots capable of hybrid aerial and aquatic locomotion, we require versatile propulsive strategies that reconcile the different physical constraints of airborne and aquatic environments. Furthermore, transitioning between aerial and aquatic environments poses substantial challenges at the scale of microrobots, where interfacial surface tension can be substantial relative to the weight and forces produced by the animal/robot.

View Article and Find Full Text PDF

Many insects are well adapted to long-distance migration despite the larger energetic costs of flight for small body sizes. To optimize wing design for next-generation flying micro-robots, we analyse butterfly wing shapes and wing orientations at full scale using numerical simulations and in a low-speed wind tunnel at 2, 3.5 and 5 m s.

View Article and Find Full Text PDF

Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family .

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8qrmc4noa385d6hqfcdcupm33l4prkuv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once