We report a production level implementation of pair atomic resolution of the identity (PARI) based second-order Møller-Plesset perturbation theory (MP2) in the Slater type orbital (STO) based Amsterdam Density Functional (ADF) code. As demonstrated by systematic benchmarks, dimerization and isomerization energies obtained with our code using STO basis sets of triple-ζ-quality show mean absolute deviations from Gaussian type orbital, canonical, basis set limit extrapolated, global density fitting (DF)-MP2 results of less than 1 kcal/mol. Furthermore, we introduce a quadratic scaling atomic orbital based spin-opposite-scaled (SOS)-MP2 approach with a very small prefactor.
View Article and Find Full Text PDFWe present a new implementation of analytical gradients for subsystem density-functional theory (sDFT) and frozen-density embedding (FDE) into the Amsterdam Density Functional program (ADF). The underlying theory and necessary expressions for the implementation are derived and discussed in detail for various FDE and sDFT setups. The parallel implementation is numerically verified and geometry optimizations with different functional combinations (LDA/TF and PW91/PW91K) are conducted and compared to reference data.
View Article and Find Full Text PDFWe present a systematically improvable density fitting scheme designed for accurate Coulomb potential evaluation of periodic and molecular systems. The method does not depend on the way the density is calculated, allowing for a basis set expansion as well as a numerical representations of the orbitals. The scheme is characterized by a partitioning of the density into local contributions that are expanded by means of cubic splines.
View Article and Find Full Text PDFIn this article, we document a new implementation of the fuzzy cells scheme for numerical integration in polyatomic systems [Becke, J. Chem. Phys.
View Article and Find Full Text PDF