Publications by authors named "Mirjana Udicki"

The close cooperation between breast cancer and cancer-associated adipose tissue (CAAT) shapes the malignant phenotype, but the role of mitochondrial metabolic reprogramming and obesity in breast cancer remains undecided, especially in premenopausal women. Here, we examined mitochondrial metabolic dynamics in paired biopsies of malignant versus benign breast tumor tissue and CAAT in normal-weight and overweight/obese premenopausal women. Lower protein level of pyruvate dehydrogenase and citrate synthase in malignant tumor tissue indicated decreased carbon flux from glucose into the Krebs cycle, whereas the trend was just the opposite in malignant CAAT.

View Article and Find Full Text PDF

Typical features of the breast malignant phenotype rely on metabolic reprogramming of cancer cells and their interaction with surrounding adipocytes. Obesity is strongly associated with breast cancer mortality, yet the effects of obesity on metabolic reprogramming of cancer and cancer-associated adipose tissue remain largely unknown. Paired biopsies of breast tumor tissue and adipose tissue from premenopausal women were divided according to pathohistological analyses and body mass index on normal-weight and overweight/obese with benign or malignant tumors.

View Article and Find Full Text PDF

One of the underlying mechanisms that could link breast cancer and obesity is shifted redox homeostasis in the tumor microenvironment. To reveal the relationship between the malignant phenotype and obesity, we compared redox profiles of breast tumor and tumor-associated adipose tissue from premenopausal women: normal-weight with benign tumors, overweight/obese with benign tumors, normal-weight with malignant tumors, and overweight/obese with malignant tumors. Namely, we examined the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), protein expression and activity of main antioxidant defense (AD) enzymes: copper, zinc- and manganese superoxide dismutase, catalase, and glutathione peroxidase, as well as the level of 4-hydroxy-2-nonenal (4-HNE) modified proteins.

View Article and Find Full Text PDF

Metabolic reprogramming that favors high glycolytic flux with lactate production in normoxia is among cancer hallmarks. Lactate is an essential oncometabolite regulating cellular redox homeostasis, energy substrate partitioning, and intracellular signaling. Moreover, malignant phenotype's chief characteristics are dependent on the interaction between cancer cells and their microenvironment.

View Article and Find Full Text PDF

Background: Obesity is a well known risk factor for the development of metabolic abnormalities. However, some obese people are healthy and on the other hand some people with normal weight have adverse metabolic profile, therefore it can be assumed that there is a difference in physical characteristics amongst these people. The aim of this study was to establish whether there are somatotype differences between metabolically healthy and metabolically obese women who are obese or of normal weight.

View Article and Find Full Text PDF