Although therapeutic drivers are changing over the years, and innovative biotech products are continuously modifying the clinical landscape, there is an increasing need for plasma protein therapies obtained by the fractionation of human plasma. Plasma-derived protein products therefore continue to play vital roles in the therapeutic management of various immunological disorders, deficiencies in coagulation factors or protease inhibitors, viral or bacterial infections, and trauma. Plasma fractionation is a biotechnology industry that has increased in complexity over the last 30 years to ensure that plasma-derived protein therapies exhibit optimal quality and pathogen safety profiles.
View Article and Find Full Text PDFBackground: Immunoglobulin G (IgG) is an essential plasma-derived medicine that is lacking in developing countries. IgG shortages leave immunodeficient patients without treatment, exposing them to devastating recurrent infections from local pathogens. A simple and practical method for producing IgG from normal or convalescent plasma collected in developing countries is needed to provide better, faster access to IgG for patients in need.
View Article and Find Full Text PDFUnlike other blood cells, platelets are small anucleate structures derived from marrow megakaryocytes. Thought for almost a century to possess solely hemostatic potentials, platelets, however, play a much wider role in tissue regeneration and repair and interact intimately with tumor cells. On one hand, tumor cells induce platelet aggregation (TCIPA), known to act as the trigger of cancer-associated thrombosis.
View Article and Find Full Text PDFThere is increasing research on and clinical interest in the physiological role played by platelet microparticles (PMPs). PMPs are 0.1-1-μm fragments shed from plasma membranes of platelets that are undergoing activation, stress, or apoptosis.
View Article and Find Full Text PDFPlatelets play a crucial role in the pathophysiological processes of hemostasis and thrombosis. Increasing evidence indicates that they fulfill much broader roles in balancing health and disease. The presence of tumor cells affects platelets both numerically, through a wide variety of mediators and cytokines, or functionally through tumor cell-induced platelet activation, the first step toward cancer-induced thrombosis.
View Article and Find Full Text PDFSeveral biomaterials can be obtained from human blood. Some are used for clinical indications requiring a high content in fibrinogen, while others are used because they contain multiple platelet growth factors. Mimicking thrombin-induced physiological events of coagulation leading to fibrino-formation and platelet activation, blood biomaterials have critical advantages of being devoid of tissue necrotic effects and of being biodegradable by body enzymes.
View Article and Find Full Text PDFThe relationship between cancer and thrombosis has been established since 1865 when Armand Trousseau described superficial thrombophlebitis as forewarning sign of occult visceral malignancy. Platelets are the primary hemostatic tool and play a primordial role in cancer-induced thrombosis. Tumor-induced numerical and functional platelet abnormalities have been described in conjunction to changes in coagulation.
View Article and Find Full Text PDF