Exponentially growing recA mutant cells of Escherichia coli display pronounced DNA degradation that starts at the sites of DNA damage and depends on RecBCD nuclease (ExoV) activity. As a consequence of this "reckless" DNA degradation, populations of recA mutants contain a large proportion of anucleate cells. We have found that both DNA degradation and anucleate-cell production are efficiently suppressed by mutations in the xonA (sbcB) and sbcD genes.
View Article and Find Full Text PDFBacillus subtilis has recently come into the focus of research on bacterial protein-tyrosine phosphorylation, with several proteins kinases, phosphatases and their substrates identified in this Gram-positive model organism. B. subtilis protein-tyrosine phosphorylation system PtkA/PtpZ was previously shown to regulate the phosphorylation state of UDP-glucose dehydrogenases and single-stranded DNA-binding proteins.
View Article and Find Full Text PDFDehydration or desiccation is one of the most frequent and severe challenges to living cells. The bacterium Deinococcus radiodurans is the best known extremophile among the few organisms that can survive extremely high exposures to desiccation and ionizing radiation, which shatter its genome into hundreds of short DNA fragments. Remarkably, these fragments are readily reassembled into a functional 3.
View Article and Find Full Text PDFEscherichia coli cells with mutations in recBC genes are defective for the main RecBCD pathway of recombination and have severe reductions in conjugational and transductional recombination, as well as in recombinational repair of double-stranded DNA breaks. This phenotype can be corrected by suppressor mutations in sbcB and sbcC(D) genes, which activate an alternative RecF pathway of recombination. It was previously suggested that sbcB15 and DeltasbcB mutations, both of which inactivate exonuclease I, are equally efficient in suppressing the recBC phenotype.
View Article and Find Full Text PDFRecombination of lambda red gam phage in recD mutants is unaffected by inactivation of RecJ exonuclease. Since nucleases play redundant roles in E. coli, we inactivated several exonucleases in a recD mutant and discovered that 5'-3' exonuclease activity of RecJ and exonuclease VII is essential for lambda-recombination, whereas exonucleases of 3'-5' polarity are dispensable.
View Article and Find Full Text PDFInactivated replication forks may be reversed by the annealing of leading- and lagging-strand ends, resulting in the formation of a Holliday junction (HJ) adjacent to a DNA double-strand end. In Escherichia coli mutants deficient for double-strand end processing, resolution of the HJ by RuvABC leads to fork breakage, a reaction that we can directly quantify. Here we used the HJ-specific resolvase RusA to test a putative role of the RuvAB helicase in replication fork reversal (RFR).
View Article and Find Full Text PDFThe RecBCD enzyme of Escherichia coli consists of three subunits RecB, RecC and RecD. RecBCD enzyme activities are regulated by its interaction with recombination hotspot Chi. Biochemical and genetic evidence suggest that interaction with Chi affects RecD subunit, and that RecD polypeptide overproduction antagonizes this interaction, suggesting that intact RecD replaces a Chi-modified one.
View Article and Find Full Text PDFThe Escherichia coli RecBCD enzyme is a powerful helicase and nuclease that processes DNA molecules containing blunt double-strand DNA end. Mutants deprived of RecBCD enzyme functions are extremely sensitive to DNA-damaging agents, poorly viable and severely deficient in homologous recombination. Remarkably, such important cellular functions rely on only about 10 molecules of RecBCD present in a cell.
View Article and Find Full Text PDFEscherichia coli DNA polymerase III (Pol III) is one of the best studied replicative DNA polymerases. Here we report the properties of an E. coli mutant that lacks one of the subunits of the Pol III clamp loader complex, Psi (psi), as a result of the complete inactivation of the holD gene.
View Article and Find Full Text PDFAntimutators are genetic mutants that produce mutations at reduced rates compared to the wild type strain. They are interesting because they may provide insights into the mechanisms by which spontaneous mutations occur. We have investigated a reported antimutator strain of Escherichia coli termed mud for its possible mechanism.
View Article and Find Full Text PDFThe RuvABC proteins of Escherichia coli play an important role in the processing of Holliday junctions during homologous recombination and recombinational repair. Mutations in the ruv genes have a moderate effect on recombination and repair in wild-type strains but confer pronounced recombination deficiency and extreme sensitivity to DNA-damaging agents in a recBC sbcBC background. Genetic analysis presented in this work revealed that the (Delta)ruvABC mutation causes an identical DNA repair defect in UV-irradiated recBC sbcBC, sbcBC, and sbcB strains, indicating that the sbcB mutation alone is responsible for the extreme UV sensitivity of recBC sbcBC ruv derivatives.
View Article and Find Full Text PDF