Publications by authors named "Mirjana Comor"

Non-woven jute (NWJ) produced from carpet industry waste was oxidized by HO or alkali-treated by NaOH and compared with water-washed samples. Changes in the structure of the NWJ, tracked by X-ray diffraction (XRD), showed that both chemical treatments disrupt hydrogen bond networks between cellulose Iβ chains of the NWJ fibers. Thereafter, nano-carbon nitride (nCN) was impregnated, using a layer-by-layer technique, onto water-washed jute samples (nCN-Jw), NaOH-treated samples (nCN-Ja) and-HO treated samples (nCN-Jo).

View Article and Find Full Text PDF
Article Synopsis
  • A study was conducted to analyze the effectiveness of TiO nanoparticles and TiO/polyaniline nanocomposites in removing pharmaceuticals (like propranolol and amitriptyline) and pesticides (such as sulcotrione and clomazone) from various water types, including double distilled water and environmental waters.
  • The research found that the degradation of propranolol and amitriptyline was more efficient in environmental waters (rivers and lakes) compared to double distilled water, while the degradation of sulcotrione and clomazone was less effective in environmental waters.
  • Both bare TiO and the TP-100 nanocomposite were effective for mineralizing propranolol and amitriptyline,
View Article and Find Full Text PDF

The surface modification of nanocrystalline TiO2 particles (45 Å) with catecholate-type ligands having different electron donating/electron withdrawing substituent groups, specifically 3-methylcatechol, 4-methylcatechol, 3-methoxycatechol, 3,4-dihydroxybenzaldehyde and 4-nitrocatechol, was found to alter the optical properties of nanoparticles in a similar way to catechol. The formation of the inner-sphere charge-transfer (CT) complexes results in a red shift of the semiconductor absorption compared to unmodified nanocrystallites and a reduction of the effective band gap, being slightly less pronounced in the case of electron withdrawing substituents. The investigated ligands have the optimal geometry for binding to surface Ti atoms, resulting in ring coordination complexes of the catecholate type (binuclear bidentate binding-bridging) thus restoring six-coordinated octahedral geometry of surface Ti atoms.

View Article and Find Full Text PDF

The surface modification of nanocrystalline TiO2 particles (45 Å) with salicylate-type ligands consisting of an extended aromatic ring system, specifically 3-hydroxy-2-naphthoic acid, 3,5-dihydroxy-2-naphthoic acid and 3,7-dihydroxy-2-naphthoic acid, was found to alter the optical properties of nanoparticles in a similar way to salicylic acid. The formation of the inner-sphere charge-transfer (CT) complexes results in a red shift of the semiconductor absorption compared to unmodified nanocrystallites and a reduction in the band gap upon the increase in the electron delocalization when including an additional ring. The investigated ligands have the optimal geometry for binding to surface Ti atoms, resulting in ring coordination complexes of a salicylate-type (binuclear bidentate binding-bridging) thus restoring the six-coordinated octahedral geometry of surface Ti atoms.

View Article and Find Full Text PDF

Surface modification of nanocrystalline TiO(2) particles (45 Å) with catecholate-type ligands consisting of an extended aromatic ring system, i.e., 2,3-dihydroxynaphthalene and anthrarobin, was found to alter the optical properties of the nanoparticles in a similar way to modification with catechol.

View Article and Find Full Text PDF

The aim of this work was to study the efficiency of Fe- and N-doped titania suspensions in the photocatalytic degradation of the herbicides RS-2-(4-chloro-o-tolyloxy)propionic acid (mecoprop, MCPP), (4-chloro-2-methylphenoxy)acetic acid (MCPA), and 3,6-dichloropyridine-2-carboxylic acid (clopyralid, CP) under the visible light (lambda > or = 400 nm) irradiation. The obtained results were compared with those of the corresponding undoped TiO(2) (rutile/anatase) and of the most frequently used TiO(2) Degussa P25. Computational modeling procedures were used to optimize geometry and molecular electrostatic potentials of MCPP, MCPA and CP and discuss the obtained results.

View Article and Find Full Text PDF

Mycobacterial infections have a high economic, human and animal health impact. Herein, we present the development of a colorimetric method that relies on the use of gold nanoparticles for fast and specific detection of Mycobacterium spp. dispensing with the need for DNA amplification.

View Article and Find Full Text PDF

Titanium dioxide nanopowders doped with different amounts of Fe ions were prepared by coprecipitation method. Obtained materials were characterized by structural (XRD), morphological (TEM and SEM), optical (UV/vis reflection and photoluminescence, and Raman), and analytical techniques (XPS and ICP-OES). XRD analysis revealed rutile crystalline phase for doped and undoped titanium dioxide obtained in the same manner.

View Article and Find Full Text PDF

In this study, nitrogen-doped titanium dioxide (TiO2) powders were synthesized in two ways: by heating of titanium hydroxide with urea and by direct hydrolysis of titanium tetraisopropoxide (TTIP) with ammonium hydroxide. The samples were characterized by structural (XRD), analytical (XPS), optical (UV/Vis absorption/reflection and Raman spectroscopy) and morphological (SEM, TEM) techniques. The characterization suggested that the doped materials have anatase crystalline form without any detectable peaks that correspond to dopants.

View Article and Find Full Text PDF

Nonaqueous reactions between titanium(IV) chloride and alcohols (benzyl alcohol or n-butanol) were used for the synthesis of anatase TiO2 particles, while rutile TiO2 particles were synthesized in aqueous media by acidic hydrolysis of titanium(IV) chloride. The X-ray diffraction measurements proved the exclusive presence of either the anatase or the rutile phase in prepared samples. The photoluminescence of both kinds of particles (anatase and rutile) with several well-resolved peaks extending in the visible spectral region was observed, and the quantum yield at room temperature was found to be 0.

View Article and Find Full Text PDF

In this study, the interaction of the anion of quinapril (QUIN), angiotensin converting enzyme (ACE) inhibitor, with cationic surfactant cetyltrimethylammonium bromide (CTAB) was investigated. The effect of cationic micelles on the spectroscopic and acid-base properties of QUIN was studied at pH 8. The binding of QUIN anion to CTAB micelles implied a shift in drug acidity constant (pK(a)(water)-pK(a)(micelle)=1.

View Article and Find Full Text PDF